J. K. SHAH CLASSES FYJC - TEST - 02

BRANCH : BORIVALI & ANDHERI(A1 & B2)

SUB : MATHS - SET 1

MARKS : 40 Time : 1 Hour 30 min. Date : 2 / 10 / 2016

SOLUTION

MEASURES OF DISPERSION

1. For the following frequency distribution the value of Q_1 is 33. Find the missing frequency and then calculate quartile deviation. (4 Marks)

Wages (₹ per hour)	30 - 32	32 – 34	34 - 36	36 - 38	38 - 40	40 - 42	42 - 44
No of	?	18	16	14	12	8	4

Ans: Let x be the missing frequency. Now we shall form 1.c.f. table as follows :

Class Interval	Frequency	l.c.f		
30 - 32	х	х		
32 - 34	18	18 + x		
34 - 36	16	34 + x		
36 - 38	14	48 + x		
38 - 40	12	48 + x		
40 - 42	8	68 + x		
42 - 44	4	72 + x		

Given that, $Q_1 = 33$, 32 -34 is the first quartile class. \therefore L = 32, c.f. = x, h = 2, f = 18

$$\therefore \qquad \qquad \mathsf{Q}_1 = \mathsf{L} + \frac{h}{f} \Big(\frac{N}{4} - c.f. \Big)$$

- $\therefore \qquad 33 = 32 + \frac{2}{18} \left(\frac{(72+x)}{4} x \right)$
- :. 9 x (33 -32) = $\left(\frac{(72+x)}{4} x\right)$
- : 9 + x = $\frac{(72+x)}{4}$
- \therefore 36 + 4x = 72 + x
- \therefore 3x = 36
- ∴ x = 12

Now, N = 72 + 12 = 84

After getting missing frequency, we can form l.c.f. table as follows :

Class Interval	Frequency	l.c.f.		
30 - 32	12	12		
32 - 34	18	30		
34 - 36	16	46		
36 - 38	14	60		
38 - 40	12	72		
40 - 42	8	80		
42 - 44	4	84		

For Q₃ consider $\left(\frac{3N}{4}\right) = 63$ \therefore Q₃ lies in the class 38 -40 \therefore L = 38, c.f. = 60, h = 2, f = 12 \therefore Q₃ = L + $\frac{h}{f}\left(\frac{3N}{4} - c.f.\right)$ = 38 + $\frac{2}{12}(63 - 60)$ = 38 + $\frac{6}{12}$ = 38 + 0.5 \therefore Q₃ = 38.5 \therefore Q.D. = $\frac{Q_3 - Q_1}{2}$ = $\frac{38.5 - 33}{2}$ Q.d. = 2.75

- Compute the mean deviation about

 (i) the mean and (ii) the median for the price of share of particular company in a week 40,47,38,41,49.
 (3 Marks)
- Ans: First we find the mean and the median of given data.

Mean =
$$\frac{\sum x}{n} = \frac{215}{5} = 43$$

Now we shall find median of the observation. For this we arrange the observation in ascending order as 38,40,41,47,49.

By definition, Median = Me = 41

xi	$ x_i - Mean $ = $ x_i - 43 $	$ x_i Me =$ $ x_i - 41 $
40	3	1
47	4	6
38	5	3
41	2	0
49	6	8
Total	20	18

From table

$$\sum_{i=1}^{n} lx_i - Meanl = 20, \qquad \qquad \sum_{i=1}^{n} lx - Mel = 18$$

M.D. about mean $= \frac{\sum lx - Meanl}{n} = \frac{20}{5} = 4$

M.D. about median $=\frac{\sum lx - Medianl}{n} = \frac{18}{5} = 3.6$

.				c , cu:				, are			(unit,
			Price in ci		20	22	19	23	26			
			Price in ci	ty B	10	20	18	12	15			
Ans:	Let price in	n city A be >	and price	in city	yBbe	эy						
	x	<i>x</i> ²	У	у	y ²							
	20	400	10	1(00							
	22	484	20	4(00							
	19	361	18	32	24							
	23	529	12		44							
	26	676	15		25							
	110	2450	75	11	.93							
St	x = 1 : $\bar{x} = \frac{\Sigma}{2}$	$\frac{x}{n} = \frac{110}{5} =$		Step	5 : σ _y	= \[\[\]2	$\frac{y^2}{n}$	$(\bar{y})^2$				
St	ep 2 :						•		$-(15)^2$			
$\sigma_x = \sqrt{\frac{\sum x^2}{n} - (\bar{x})^2}$							= v = v		5 – 225			
$= \sqrt{\frac{2450}{5} - (22)^2}$							= 3.	69 [Applying lo	g]		
$= \sqrt{490 - 484}$				Step 6 : = $C.V_B = \frac{\sigma_y}{y} \times 100$								
		$\sqrt{6}$					$=\frac{3.6}{15}$	<u>9</u> x	100			
St	= :ep 3 :	2.45 [Apply	ying log]				= 24	1.59	%			
$C.V_A = \frac{\sigma_x}{\bar{x}} \times 100$				Ste	ep 7		ince < ($C.V_B$				
		$=\frac{2.45}{22}$ x = 11.13							responding city B, the p			
<u>St</u>	:ep 4 : ÿ	$= \frac{\sum y}{n} = \frac{75}{5}$			in cit			y to t	city b, the p		חכ זומ	Diffy

Prices of a particular commodity in five years in two cities are as follows :

(4 Marks)

MOMENTS

3.

4. The first four raw moments of a distribution are 2,20,40 and 50 respectively. Find the first four central moments of the distribution. (3 Marks)

Ans: The first four raw moments of the distribution are

 μ_1^\prime =2, μ_2^\prime =20, μ_3^\prime = 40 and μ_4^\prime = 50

We want to find first four central moments μ_1 , μ_2 , μ_3 and μ_4 .

We know that $\mu_1 = 0$.

Using relations between raw moments and central moments, We get μ_2 = $~\mu_2'$ - ${\mu_1'}^2$

$$= 20-4 = 16$$

$$\mu_3 = \mu'_3 - 3\mu'_2 \mu'_1 + 2\mu'^3_1$$

= 40 - 3(20)(2) + 2(8)

$$= 40 - 120 + 16$$

= - 64

 $\mu_4 = \mu'_4 - 4\mu'_3 \mu'_1 + 6\mu'_2 \mu_1^2 - 3{\mu'_1}^4$

- = 50 4(40)(2) + 6(20)(4) 3(16)
- = 50-320+480-48
- = 162

Thus, the first four central moments are $\mu_1 = 0$, $\mu_2 = 16$, $\mu_3 = -64$ and $\mu_4 = 162$

ANGLE AND ITS MEASUREMENT

- 5. One angle of a quadrilateral has measure $\frac{2\pi}{9}$ radians and the measures of the other three angles are in the ratio 3 :5 : 8, find the measures in radians. (3 Marks)
- Ans: The sum of angles of a quadrilateral is 360°. One of the angles is given to be $\frac{2\pi}{9} = \frac{2\pi}{9} \times \frac{180}{\pi} = 40^{\circ}$

: Sum of the remaining three angles is $360^{\circ} - 40^{\circ} = 320^{\circ}$

Since these three angles are in the ratio 3 : 5 :8,

degree measures of these angles are 3k, 5k, 8k, where k is constant.

 $\therefore 3k + 5k + 8k = 320^{\circ}$

 $\therefore 16k = 320^{\circ}$

$$\therefore K = 20^{\circ}$$

 \therefore The measures of three angles are

 $(3k)^{\circ} = (3 \times 20)^{\circ} = 60^{\circ}$

 $(5k)^{\circ} = (5 \times 20)^{\circ} = 100^{\circ}$

and $(8k)^{\circ} = (8 \times 20)^{\circ} = 160^{\circ}$

∴ Three angles are 300, 1000 , 1600.

These three angles in radians are

$$60^{\circ} = \left[60 \ x \ \frac{\pi}{180}\right]^{c} = \frac{\pi^{c}}{3}$$
$$100^{\circ} = \left[100 \ x \ \frac{\pi}{180}\right]^{c} = \frac{5\pi^{c}}{9}$$
$$160^{\circ} = \left[160 \ x \ \frac{\pi}{180}\right]^{c} = \frac{8\pi^{c}}{9}$$

TRIGONOMETRY

6. Find the trigonometric function of $-\frac{5\pi^c}{6}$

(3 Marks)

Ans: Let m \angle XOB = $-\frac{5\pi^c}{6}$

Draw a unit circle with centre at the origin. Let ray OB meet the standard unit circle in P (x, y).

l(OP) = 1Draw segment PM perpendicular to X – axis In \triangle POM, m \angle POM = $\frac{\pi^c}{6} = 30^\circ$

$$\begin{aligned}
\mathbf{y} = \mathbf{y} \\
\mathbf{y}$$

(2 Marks)

8.	If Sin A = $\frac{4}{5}$, $\frac{\pi^c}{2}$ < A < π^c	(4 Marks)
Ans.	$\cos \mathbf{B} = \frac{5}{13}, \frac{3\pi^c}{2} < \mathbf{B} < 2\pi^c$. Find We have,	d (i) Sin(A + B), (ii) Cos (A – B) (iii) Tan (A-B)
	cos^2 A = 1 - sin^2 A	(i) Sin (A+B) = sin A . cos B + cos A . sin B
	$= 1 - \left(\frac{4}{5}\right)^2$	$= \left(\frac{4}{5}\right) \left(\frac{5}{13}\right) + \left(\frac{-3}{5}\right) \left(\frac{-12}{13}\right)$
	$= 1 - \frac{16}{25} \\ = \frac{9}{25}$	$= \frac{20}{65} + \frac{36}{65}$
	$= \frac{3}{25}$ $\therefore \cos A = \pm \frac{3}{5}$	$=\frac{56}{65}$
	Since, <u>A</u> lies in the second quadrant.	d (ii) cos (A-B) = cos A . cos B + sin A . sin B
	$\therefore \cos A = -\frac{3}{5}$	$= \left(\frac{-3}{5}\right) \left(\frac{5}{13}\right) + \left(\frac{4}{5}\right) \left(\frac{-12}{13}\right)$
	$Tan A = \frac{\sin A}{\cos A}$	$= \frac{-15}{65} + \frac{48}{65}$
	$= \left(\frac{4/5}{-3/5}\right)$	$=\frac{-63}{65}$
	$= -\frac{4}{3}$	(iii) $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$
	sin^2 B = 1 - cos^2 B = $1 - \left(\frac{5}{13}\right)^2$	$= \underbrace{\left(\frac{-4}{3}\right) - \left(\frac{-12}{5}\right)}_{1 + \left(\frac{-4}{2}\right) \cdot \left(\frac{-12}{5}\right)}$
	$= 1 - \frac{25}{169}$	$\frac{-4}{-4} + \frac{12}{-4}$
	$=$ $\frac{144}{169}$	$= \frac{\frac{3}{1} + \frac{48}{15}}{1 + \frac{48}{15}}$
	$\therefore \sin B = \pm \frac{12}{13}$	$ \begin{array}{r} \underline{16} \\ \underline{15} \\ \underline{63} \end{array} $
	Since, B line in the fourth quadrant.	
	$\therefore \sin B = -\frac{12}{13}$	$= \frac{16}{63}$
	$\tan B = \frac{\sin B}{\cos B}$	
	$=\left(\frac{-12/13}{5/13}\right)$	
	$= \frac{-12}{5}$	

LOCUS

9. A (2,5) and B (9,-14), are the vertices of \triangle ABC. The third vertex C lies on the locus whose equation is 3x + 4y + 5 = 0. Find the locus of the centroid of \triangle ABC. (3 Marks)

Ans: Let G (x,y) be the centroid of \triangle ABC. Let C(h,k) be any point on the locus

3x + 4y + 5 = 0

 $\therefore 3h + 4k + 5 = 0$ (i)

G(x,y) is the centroid of ABC.

$$\therefore G(\mathbf{x},\mathbf{y}) = G\left[\frac{2+9+h}{3}, \frac{5-14+k}{3}\right]$$

(By centroid formula)

 $\therefore x = \frac{11+h}{3}$, and $y = \frac{-9+k}{3}$

: h = 3x - 11 and k = 3y + 9

Putting the values of h and k in equation (i), we get

$$3(3x - 11) + 4(3y + 9) + 5 = 0$$

: 9x + 12y + 8 = 0This is the required equation of the locus of centroid of $\triangle ABC$.

LOGARITHM

10. If
$$\log\left(\frac{x-y}{5}\right) = \frac{1}{2}\log x + \frac{1}{2}\log y$$
, Show that $x^2 + y^2 = 27xy$ (3 Marks)
Ans.
 $\log\left(\frac{x-y}{5}\right) = \frac{1}{2}\log x + \frac{1}{2}\log y$,
 $\log\left(\frac{x-y}{5}\right) = \frac{1}{2}\log(xy)$,
 $\log\left(\frac{x-y}{5}\right) = \frac{1}{2}\log(xy)$,
 $\log\left(\frac{x-y}{5}\right) = \log(xy)^{1/2}$,
 $\log\left(\frac{x-y}{5}\right) = \log\sqrt{xy}$,
Dropping log:
 $\frac{x-y}{5} = \sqrt{xy}$,
Sauarina
 $\left(\frac{x-y}{5}\right)^2 = xy$
 $\frac{(x-y)^2}{25} = xy$
 $x^2 - 2xy + y^2 = 25xy$
 $x^2 + y^2 = 27xy$

COMPLEX NUMBER 11. If a and b are real and $(i^4 + 3i) a + (i - 1)b + 5i^3 = 0$, Find a and b Ans. $(i^4 + 3i) a + (i - 1)b + 5i^3 = 0 = 0 + 0i$: $(1+3i)a + (i-1)b + 5i^3 = 0 + 0i$ \therefore a + 3a i + b i -b -5 i = 0 + 0 i (a-b) + (3a+b-5) i = 0 + 0 iEquating real and imaginary parts on both sides, we get, a - b = 0 and 3a + b - 5 = 0 \therefore a = b and 3a + b = 5 \therefore 3a + a = 5 4a = 5a = $\frac{5}{4}$ \therefore a = b = $\frac{5}{4}$ SEQUENCE AND SERIES (AP & GP) (2 Marks) For a G.P if a = 5 and $t_7 = \frac{1}{3125}$, find \mathfrak{r} and t_9 a = 5, $t_7 = \frac{1}{3125}$ $t_9 = a (r)^{9-1}$

Ans. $= 5 \left(\frac{1}{5}\right)^8$ $\boldsymbol{t_n} = \mathbf{a} \ (r)^{n-1} \ ,$ $= 5 \left(\frac{1}{5}\right) \left(\frac{1}{5}\right)^7$ $t_7 = 5 (r)^{7-1}$, $=\frac{1}{78125}$ $\frac{1}{3125}$ = 5 $(r)^6$ $\frac{1}{3125 x 5} = r^6$ $r = \frac{1}{r}$

12.

Find four Numbers in G.P such that their product is 729 and the sum of second and third number is 13. 12. (3 Marks)

Ans. Let 4 Numbers in G.P be $\frac{a}{r^3}$, $\frac{a}{r}$, or, ar^3 Second Condition : Sum of $2^{nd} \& 3^{rd} = 12$ First Condition : Product = 729 $\frac{a}{r^3}$, $\frac{a}{r}$, ar, $ar^3 = 729$ $\frac{a}{a}$ + ar = 12 $a\left(\frac{1}{r}+r\right) = 12$ $a^4 = 729$ $\sqrt{3}\left(\frac{1+r^2}{r}\right) = 1/2^4$ $a = \sqrt[4]{729}$ $\sqrt{3} (1+r^2) = 4r$ a = $\sqrt{27}$ $\sqrt{3} r^2 + \sqrt{3} = 4r$ $a = 3 \sqrt{3}$ $\sqrt{3} r^2 - 4r + \sqrt{3} = 0$

(3 Marks)

$$\sqrt{3} r^{2} - 3r - r + \sqrt{3} = 0$$

$$\sqrt{3r} (r - \sqrt{3}) - 1 (r - \sqrt{3}) = 0$$

$$(r - \sqrt{3}) (\sqrt{3} r - 1) = 0$$

$$r = \sqrt{3} \text{ or } \frac{1}{\sqrt{3}}$$

$$\frac{1}{r} r = \sqrt{3}, a = 3\sqrt{3}$$

$$\frac{a}{r^{3}} = \frac{3\sqrt{3}}{(\sqrt{3})^{3}} = 1$$

$$\frac{a}{r} = \frac{3\sqrt{3}}{\sqrt{3}} = 3$$

$$ar = (3\sqrt{3}) \cdot \sqrt{3} = 9$$

$$ar^{3} = 3\sqrt{3} \cdot ((\sqrt{3})^{3}) = 27$$

$$(1,3,9,27) \quad OR \quad (27,9,3,1)$$