

SUGGESTED SOLUTION

SYJC

SUBJECT- Mathematics & Statistics

Test Code – SYJ 6116

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

	SET A	
ANS	WER:1	
(i)	The dual of $(p \lor q) \lor r \equiv p \lor (q \lor r)$ is $(p \land q) \land r \equiv p \land (q \land r)$	(2)
(ii)	$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3\\2 & 4 & 6\\3 & 6 & 9 \end{bmatrix}$	
(iii)	$\int \frac{1}{x \log x \log(\log x)} dx$	(2)
	(Hint : Put log (log x) = t]	
	$\log \log(\log x) + c$	
(iv)	$\int e^x \left[\tan^{-1}x + \frac{1}{1+x^2} \right] dx$	(2)
	Let I = $\int e^x \left(tan^{-1}x + \frac{1}{1+x^2} \right) dx$	
	Put $f(x) = tan^{-1}x$: $f'(x) = \frac{1}{1+x^2}$	
	$\therefore I = \int e^x \left[f(x) + f'(x) \right] dx$	
	$= e^{x}. f(x) + c = e^{x}. tan^{-1} x + c$	(2)
(v)	x + 3y = 2, 3x + 5y = 4	(2)
	The given equations can be written in the matrix form as :	
	$\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	
	By $R_2 - 3R_1$	
	$\begin{bmatrix} 1 & 3 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$	
	$\therefore \begin{bmatrix} x+3y\\0-4y \end{bmatrix} = \begin{bmatrix} 2\\-2 \end{bmatrix}$	
	By equality of matrices, x + 3y = 2(1)	
	-4y = -2(1)	
	From (2), $y = \frac{1}{2}$	
	Substituting $\gamma = \frac{1}{2}$ in (1), we get,	
	$x + \frac{3}{2} = 2$	
	$\therefore x = 2 - \frac{3}{2} = \frac{1}{2}$	
	Hence, $x = \frac{1}{2}$, $y = \frac{1}{2}$ is the required solution.	
		(2)

(vi)
$$f(x) = \frac{\sin 5x}{x}$$
, for $x \neq 0$
= 1, for $x = 0$, at $x = 0$.
 $f(0) = 1$ (Given)(1)
 $\lim_{x \to 0} \frac{f(x)}{5x} = \lim_{x \to 0} \frac{\sin 5x}{5x}$
= $\lim_{x \to 0} \frac{\sin 5x}{5x} \times 5$
= $5 \lim_{x \to 0} \frac{\sin 5x}{5x}$
= 5×1 $[x \to 0, 5x \to 0 \text{ and } \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1]$
= 5 (2)
From (1) and (2)
 $\lim_{x \to 0} f(x) \neq f(0)$
 $\therefore f(x)$ is discontinuous at $x = 0$.
(vii) $x = 4 + 25t^2$, $y = 16t^3$
Differentiating x and y w.r.t. t , we get,
 $\frac{dx}{dt} = \frac{d}{dt}(4 + 25t^2)$
= $0 + 25 \times 2t = 50t$
and $\frac{dy}{dt} = \frac{d}{dt}(16t^3) = 16 \times 3t^2 = 48t^2$
 $\therefore \frac{dy}{dx} = \frac{(dy/dt)}{(dx/dt)} = \frac{48t^2}{50t} = \frac{24}{25} \cdot t$.
(viii) $f(x) = x^3 - 9x^2 + 27x + 7$
 $\therefore f'(x) = \frac{d}{dx}(x^3 - 9x^2 + 27x + 7)$
= $3x^2 - 9 \times 2x + 27 \times 1 + 0$
= $3x^2 - 18x + 27$
= $3(x^2 - 6x + 9) = 3(x - 3)^2 > 0$ for all $x \in \mathbb{R}, x \neq 3$
 $\therefore f'(x) > 0$ for all $x \in \mathbb{R} - \{3\}$.

(2)

(2)

(2)

ANSWER : 2(A)

For x < 1,
$$f(x) = \frac{\sin \pi x}{x-1} + a$$

$$\therefore \lim_{x \to 1^-} f(\mathbf{x}) = \lim_{x \to 1} \left(\frac{\sin \pi x}{x - 1} + a \right)$$

Put x = 1 + h. Then x – 1 = h and as x \rightarrow 1, h \rightarrow 0.

$$\therefore \lim_{x \to \Gamma} f(x) = \lim_{h \to 0} \left[\frac{\sin \pi (1+h)}{h} + a \right]$$
$$= \lim_{h \to 0} \left[\frac{\sin (\pi + \pi h)}{h} + a \right]$$
$$= \lim_{h \to 0} \left[\frac{-\sin \pi h}{h} + a \right]$$
$$= \lim_{h \to 0} \left[-\frac{\sin \pi h}{\pi h} \times \pi + a \right]$$
$$= -\pi \lim_{h \to 0} \frac{\sin \pi h}{\pi h} + a$$
$$= -\pi \times 1 + a \dots [h \to 0, \pi h \to 0 \text{ and } \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1]$$
$$= -\pi + a$$
Also, f(1) = 2π (Given)

Now, f(x) is continuous at x = 1.

$$\therefore \qquad \lim_{x \to 1^{-}} f(x) = f(1)$$

$$\therefore \qquad -\pi + a = 2\pi$$

$$\therefore \qquad a = 3\pi$$

For x > 1, f(x) = $\frac{1 + \cos \pi x}{\pi (1 - x)^2} + b$

$$\therefore \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} \left[\frac{1 + \cos \pi x}{\pi (1 - x)^2} + b \right]$$

Put x = 1 + h. Then 1 - x = - h and as x \rightarrow 1, h \rightarrow 0.
Also, 1 + cos $\pi x = 1 + \cos \pi (1 + h)$

= 1 + cos (π + π h) = 1 - cos π h

$$\therefore \lim_{x \to 1^+} f(x) = \lim_{h \to 0} \left[\frac{1 - \cos \pi h}{\pi (-h)^2} + b \right]$$

$$= \lim_{h \to 0} \left[\frac{1 - \cos \pi h}{\pi h^2} \cdot \frac{1 + \cos \pi h}{1 + \cos \pi h} + b \right]$$

$$= \lim_{h \to 0} \left[\frac{1 - \cos^2 \pi h}{\pi h^2 (1 + \cos \pi h)} + b \right]$$

$$= \lim_{h \to 0} \left[\left(\frac{\sin^2 \pi h}{\pi h} \right)^2 \times \frac{\pi}{1 + \cos \pi h} + b \right]$$

$$= \pi \left(\lim_{h \to 0} \frac{\sin \pi h}{\pi h} \right)^2 \times \frac{1}{\lim_{h \to 0} (1 + \cos \pi h)} + b$$

$$= \pi (1)^2 \times \frac{1}{1 + 1} + b \dots [h \to 0, \pi h \to 0 \text{ and } \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1]$$

$$= \frac{\pi}{2} + b$$
Since f is continuous at x = 1,

$$\lim_{x \to 1^+} f(x) = f(1)$$

$$\therefore \frac{\pi}{2} + b = 2\pi$$

$$\therefore b = 2\pi - \frac{\pi}{2} = \frac{3\pi}{2}$$

Hence, $a = 3\pi$ and $b = \frac{3\pi}{2}$.

(ii)

1	2	3	4	5	6	7	8	9	10
р	q	r	$\sim q$	~ r	$\sim q \lor r$	$p \land (\sim q \lor r)$	$q \wedge \sim r$	$p \rightarrow (q \wedge \sim r)$	\sim [p \rightarrow (q $\land \sim$ r)]
Т	Т	Т	F	F	Т	Т	F	F	Т
Т	Т	F	F	Т	F	F	Т	Т	F
Т	F	Т	Т	F	Т	Т	F	F	Т
Т	F	F	Т	Т	Т	Т	F	F	Т
F	Т	Т	F	F	Т	F	F	Т	F
F	Т	F	F	Т	F	F	Т	Т	F
F	F	Т	Т	F	Т	F	F	Т	F
F	F	F	Т	Т	Т	F	F	Т	F
	The entries in columns 7 and 10 are identical.								

The entries in columns 7 and 10 are identical.

 $\therefore p \land (\sim q \lor r) \equiv \sim [p \rightarrow (q \land \sim r)].$

(3)

(3)

(iii) $\sin y = x \sin (5 + y)$

$$\therefore \quad \mathbf{x} = \frac{\sin y}{\sin(5+y)}$$

Differentiate both sides with respect to x

$$\therefore 1 = \left(\frac{\sin(5+y)\cos y - \sin y\cos(5+y)}{\sin^2(5+y)}\right) \frac{dy}{dx}$$
$$\therefore 1 = \left(\frac{\sin(5+y-y)}{\sin^2(5+y)}\right) \frac{dy}{dx}$$
$$\therefore 1 = \frac{\sin 5}{\sin^2(5+y)} \cdot \frac{dy}{dx}$$
$$\therefore \frac{dy}{dx} = \frac{\sin^2(5+y)}{\sin 5}$$

Note : Though some expressions appear to be in implicit form, by using proper transformations, they can be converted into explicit form.

ANSWER : 2(B)

(i)
$$A^2 = A \cdot A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

 $= \begin{bmatrix} 1+2 & 2+6 \\ 1+3 & 2+9 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 4 & 11 \end{bmatrix}$
 $\therefore A^2 - 4A + I$
 $= \begin{bmatrix} 3 & 8 \\ 4 & 11 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 3 & 4 \\ 4 & 11 \end{bmatrix} - \begin{bmatrix} 4 & 8 \\ 4 & 12 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 3-4+1 & 8-8+0 \\ 4-4+0 & 11-12+1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\therefore A^2 - 4A + I = 0 \qquad \dots \dots (1)$
 $\therefore |A| = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix}$
 $= 3 - 2 = 1 \neq 0$
 $\therefore A^{-1}$ exists.
Pre multiply (1) by A^{-1} , we get,
 $A^{-1} (A^2 - 4A + I) = A^{-1} \cdot 0$
 $\therefore (A^{-1} (A \cdot A) - 4A^{-1} \cdot A + A^{-1} I = 0$
 $\therefore (A^{-1} A) A - 4I + A^{-1} = 0$
 $\therefore (A^{-1} A) A - 4I + A^{-1} = 0$

(3)

$$\therefore A - 4I + A^{-1} = 0$$

$$\therefore A^{-1} = 4I - A$$

$$= 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}.$$

The demand function is

(ii)

$$D = \frac{2p+3}{3p-1}$$

$$\therefore \frac{dD}{dp} = \frac{d}{dp} \left(\frac{2p+3}{3p-1}\right)$$

$$= \frac{(3p-1)\frac{d}{dp}(2p+3) - (2p+3)\frac{d}{dp}(3p-1)}{(3p-1)^2}$$

$$= \frac{(3p-1)(2 \times 1 + 0) - (2p+3)(3 \times 1 - 0)}{(3p-1)^2}$$

$$= \frac{6p-2-6p-9}{(3p-1)^2} = \frac{-11}{(3p-1)^2}$$

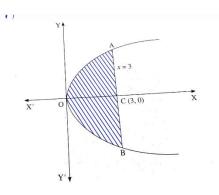
Elasticity of demand is given by

$$\eta = -\frac{p}{D} \cdot \frac{dD}{dp}$$

$$= \frac{-p}{\left(\frac{2p+3}{3p-1}\right)} \times \frac{-11}{(3p-1)^2}$$

$$= \frac{11p}{(2p+3)(3p-1)} = \frac{11p}{6p^2+7p-3}$$
If $\eta = \frac{11}{14}$, then
$$\frac{11}{14} = \frac{11p}{6p^2+7p-3}$$
 $\therefore \quad 66p^2 + 77p - 33 = 154p$
 $\therefore \quad 66p^2 - 77p - 33 = 0$
 $\therefore \quad 6p^2 - 7p - 3 = 0$
 $\therefore \quad (2p-3)(3p+1) = 0$
 $\therefore \quad 2p - 3 = 0$
 $\therefore \quad p = \frac{3}{2}.$

.....[:: $p \ge 0$]



Required area = area of the region OABO

= 2(area of the region OACO)

$$= 2\int_{0}^{3} y \, dx, \text{ where } y^{2} = 4x, \text{ i.e., } y = 2\sqrt{x}$$
$$= 2\int_{0}^{3} 2\sqrt{x} \, dx$$
$$= 4\int_{0}^{3} x^{\frac{1}{2}} \, dx$$
$$= 4 \cdot \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{3}$$

$$= \frac{8}{3} \left[x^{\overline{2}} \right]_{0}$$
$$= \frac{8}{3} (3\sqrt{3} - 0)$$

= $8\sqrt{3}$ sq. units.

ANSWER: 3(A)

(i) If f is continuous at x = 0 and

$$f(x) = 2\sqrt{x^3 + 1} + a, \text{ for } x < 0$$

$$= x^3 + a + b, \qquad \text{for } x \ge 0$$
and $f(1) = 2$

$$f(x) = x^3 + a + b, \text{ for } x \ge 0$$

$$\therefore f(1) = 1^3 + a + b = 1 + a + b$$

But f(1) = 2 $\therefore 1 + a + b = 2$ ∴ *a* + b = 1 (1) $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} (x^{3} + a + b)$ $x \rightarrow 0^+$ = 0 + a + b = a + bAlso, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0} (2\sqrt{x^3 + 1} + a)$ $= 2 \lim_{x \to 0} \sqrt{x^3 + 1} + a$ $= 2\sqrt{0+1} + a = 2 + a$ Now, f(x) is continuous at x = 0 $\therefore \lim_{x\to 0^+} f(x) = \lim_{x\to 0} f(x)$ ∴ a + b = 2 + a ∴ b = 2 Substituting b = 2 in (1), we get, *a* + 2 = 1 ∴ *a* = – 1 Hence, a = -1 and b = 2. Consider $[(p \lor q) \land \sim p] \to q$ \equiv [(p $\land \sim$ p) \lor (q $\land \sim$ p)] \rightarrow q By Distributive law $\equiv [c \lor (q \land \sim p)] \rightarrow q$ By complement law = $(q \land \sim p) \rightarrow q$ By Identity law \equiv (~ p \land q) \rightarrow q By Commutative law $\equiv \sim (\sim p \land q) \lor q$ By $\sim \sim (p \rightarrow q)$ $\equiv \sim (p \land \sim q) \equiv \sim p \lor q$ \equiv (p \lor ~ q) \lor q By De Morgan's law $\equiv p \lor (\sim q \lor q)$ By Associative law

(ii)

 $\equiv t$ By Identity law

(3)

(iii) $y = (\sin x)^x + x \cdot \sin x$

Put $u = (sin x)^{x}$ $\therefore \log u = \log (\sin x)^x = x \cdot \log \sin x$ Differentiating both sides w.r.t. x, we get, $\frac{1}{u} \cdot \frac{du}{dx} = \frac{d}{dx} (x \cdot \log \sin x)$ $= \mathbf{x} \cdot \frac{d}{dx} (\log \sin x) + (\log \sin x) \cdot \frac{d}{dx} (x)$ $= x \times \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) + (\log \sin x) \times 1$ $= x \times \frac{1}{\sin x} \cdot \cos x + \log \sin x$ $\therefore \frac{du}{dx} = u \left[x \cot x + \log \sin x \right]$ $\therefore \frac{du}{dx} = (\sin x)^x [\log \sin x + x \cot x]$(1) Now, $y = u + x \cdot sin x$ $\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{d}{dx} (x \cdot \sin x)$ $= (\sin x)^{x} [\log \sin x + x \cot x] + x \cdot \frac{d}{dx} (\sin x) + (\sin x) \cdot \frac{d}{dx} (x) \dots [By (1)]$ $= (\sin x)^{x} [\log \sin x + x \cot x] + x \cdot \cos x + (\sin x) \times 1$ $\therefore \frac{dy}{dx} = (\sin x)^{x} [\log \sin x + x \cot x] + (\sin x + x \cos x).$

(3)

ANSWER: 3 (B)

(i)
$$\int \frac{2x^2-1}{(x^2+4)(x^2+5)} dx$$

[Here numerator and denominator are function of x^2 . Hence to convert the rational function into partial fractions we put $x^2 = t$.

After converting the rational function into partial functions we resubstitute $t = x^2$ and then the integration is performed.]

Let I =
$$\int \frac{2x^2 - 1}{(x^2 + 4)(x^2 + 5)} dx$$

Consider, $\frac{2x^2 - 1}{(x^2 + 4)(x^2 + 5)}$

For finding partial fractions only, put $x^2 = t$.

$$\therefore \frac{2x^2 - 1}{(x^2 + 4)(x^2 + 5)} = \frac{2t - 1}{(t + 4)(t + 5)}$$

$$= \frac{A}{t+4} + \frac{B}{t+5} \qquad \dots (Say)$$

$$\therefore 2t - 1 = A(t+5) + B(t+4)$$

Put t + 4 = 0, i.e., t = -4, we get,

$$2(-4) - 1 = A(1) + B(0) \qquad \therefore A = -9$$

Put t + 5 = 0, i.e., t = -5, we get,

$$2(-5) - 1 = A(0) + B(-1) \qquad \therefore B = 11$$

$$\therefore \frac{2t-1}{(t+4)(t+5)} = \frac{-9}{t+4} + \frac{11}{t+5}$$

$$\therefore \frac{2x^2-1}{(x^2+4)(x^2+5)} = \frac{-9}{(x^2+4)} + \frac{11}{(x^2+5)}$$

$$\therefore I = \int \left(\frac{-9}{x^2+4} + \frac{11}{x^2+5}\right) dx$$

$$= -9 \int \frac{1}{x^2+2^2} dx + 11 \int \frac{1}{x^2+(\sqrt{5})^2} dx$$

$$\therefore I = -\frac{9}{2} \tan^{-1}\left(\frac{x}{2}\right) + \frac{11}{\sqrt{5}} \tan^{-1}\left(\frac{x}{\sqrt{5}}\right) + c.$$

The cost function is given as

$$C = \frac{x^2}{9} + 17x + 100$$

$$\therefore \text{ average cost} = C_A = \frac{C}{x}$$

$$= \left(\frac{x^2}{9} + 17x + 100\right)\frac{1}{x}$$

$$\therefore C_A = \frac{x}{9} + 17 + \frac{100}{x}$$

$$\therefore \frac{dC_A}{dx} = \frac{d}{dx}\left(\frac{x}{9} + 17 + \frac{100}{x}\right)$$

$$= \frac{1}{9} \times 1 + 0 + (100)(-1) \text{ x}^{-2}$$

$$= \frac{1}{9} - \frac{100}{x^2}$$
and $\frac{d^2C_A}{dx^2} = \frac{d}{dx}\left(\frac{1}{9} - \frac{100}{x^2}\right)$

$$= 0 - (100)(-2) x^{-3} = \frac{200}{x^3}$$

$$\frac{dC_A}{dx} = 0 \text{ gives } \frac{1}{9} - \frac{100}{x^2} = 0$$

$$\therefore x^2 - 900 = 0 \qquad \therefore x^2 = 900$$

$$\therefore x = 30$$

(ii)

......[∵ x > 0]

and
$$\left[\frac{d^2C_1}{dx^2}\right]_{dt x=30} = \frac{200}{(30)^3} > 0$$

 \therefore C_n is minimum when x = 30 and the average cost at x = 30 is
 $\left(\frac{\pi}{5} + 17 + \frac{10}{30}\right)_{dt x=30}$
 $= \frac{30}{9} + 17 + \frac{10}{30} = \frac{10}{3} + \frac{10}{3} + 17 = \frac{71}{3}$.
Marginal cost = C_M = $\frac{dc}{a} = \frac{d}{ax} \left(\frac{x^2}{9} + 17x + 100\right)$
 $= \frac{1}{9} \times 2x + 17 \times 1 + 0$
 $= \frac{2x}{9} + 17$
 \therefore (C_M)_{dtx = 30} = $\frac{2(30)}{9} + 17$
 $= \frac{20}{3} + 17 = \frac{71}{3}$ and
Hence, the minimum average cost = $\frac{71}{3}$ and Marginal cost = $\frac{71}{3}$. (4)
(iii) $\int_{\frac{7}{2}}^{\frac{7}{2}} \frac{\cot x}{\cot x+1} dx$
Let $I = \int_{\frac{7}{2}}^{\frac{7}{2}} \frac{\cos x}{(\cos x+1)^2} dx$
 $\therefore I = \int_{\frac{7}{2}}^{\frac{7}{2}} \frac{\cos x}{(\cos x + \sin x)} dx$ (1)
We use the property, $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$.
Hence, in I, we change x by $\frac{\pi}{6} + \frac{\pi}{3} - x$.
 $\therefore I = \int_{\frac{7}{2}}^{\frac{7}{2}} \frac{\cos \left(\frac{\pi}{6} + \frac{\pi}{3} - x\right)}{\cos \left(\frac{\pi}{6} + \frac{\pi}{3} - x\right)} dx$

$$= \int_{\pi/6}^{\pi/3} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} - x\right)} dx$$

$$= \int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx \qquad \dots (2)$$
Adding (1) and (2), we get
$$2l = \int_{\pi/6}^{\pi/3} \frac{\cos x}{\cos x + \sin x} dx + \int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx$$

$$= \int_{\pi/6}^{\pi/3} \frac{\cos x + \sin x}{\cos x + \sin x} dx$$

)

$$= \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$$

$$\therefore \qquad I = \frac{\pi}{12}$$
(4)

ANSWER:4

=

=

21=

=

_

(i) Let the initial value of the business = Rs. 100 (1/2 mark) \therefore original income of the broker at the rate of 6% is = Rs. 6 Now, let the new value of the business = Rs. x. \therefore new income of the broker at the rate of 7.5%. $= x \times \frac{7.5}{100} = x \times \frac{75}{1000} = \frac{3x}{40}$ (1/2 mark) But the income of the broker remains unchanged. $\therefore 6 = \frac{3x}{40}$ ∴ 240 = 3x $\therefore x = \frac{240}{3} = 80$ (1/2 mark) ... new value of the business = Rs. 80 Hence, the percentage reduction in the value of the business is 20%.

(1/2 mark)

(2)

(ii)

Age group (years)	Population	No. of deaths	Age – SDR	
	(in '000)	_	$\frac{{}_{n}D_{x}}{{}_{n}P_{x}}$ ×1000	(1/2 mark)
	_n P _x	_n D _x	$_{n}P_{x}$,
Below 5	15	360		
			$=\frac{360}{15,000} \times 1000 = 24$	(1/2 mark)
5 – 30	20	400		
			$=\frac{400}{20,000} \times 1000 = 20$	(1/2 mark)
Above 30	10	280		
			$=\frac{280}{10,000} \times 1000 = 28$	(1/2 mark)

(iii)

i) Given : $b_{yx} = -0.6$, $b_{xy} = -0.3$

$$r = \pm \sqrt{b_{yx} \cdot b_{xy}}$$
(1/2 mark)
$$= \pm \sqrt{(-0.6)(-0.3)}$$

$$= \pm \sqrt{0.18}$$
∴ r = -0.4243 (1/2 mark)

Comment :

Here, b_{yx} and b_{xy} both are negative. Hence r is also negative and hence X and Y are negatively correlated. (1 mark)

(2)

(1/2 mark)

(2)

(iv) In order that, given function is p.m.f., each must satisfy (a) $P(X = x) \ge 0, \forall x \text{ and}$ (b) $\Sigma P(X = x) = 1$ $P(X = 5.5) = \frac{5.5-5}{4} = \frac{0.5}{4} = \frac{1}{3}$

$$P(X = 6.5) = \frac{6.5 - 5}{4} = \frac{1.5}{4} = \frac{3}{8},$$

$$P(X = 7.5) = \frac{7.5 - 5}{4} = \frac{2.5}{4} = \frac{5}{8}$$
(1/2 mark)

Thus, P(X = x) > 0, $\forall x$ and

$$\Sigma P (X = x) = \frac{1}{8} + \frac{3}{8} + \frac{5}{8} = \frac{9}{8} \neq 1$$
(1/2 mark)

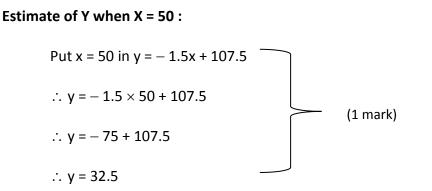
 \therefore the function is not a p.m.f.
(1/2 mark)

(v) Given, Mean = 3.5 & Variance = 2.625

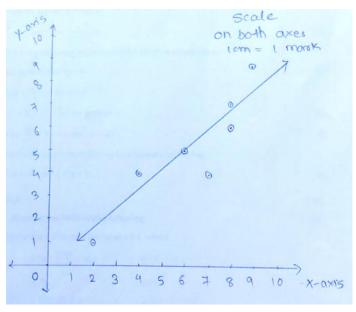
(**2**)

In the Binomial distribution,

Mean = $n \times p$ i.e. $3.5 = n \times p$ (1) (1/2 mark) and variance = $n \times p \times q$(2) $2.625 = n \times p \times q$ Divide equation (i) by (ii) Divide equation (ii) by (i) $\frac{3.5}{2.625} = \frac{n \times p}{n \times p \times q}$ $\frac{2.625}{3.5} = \frac{n \times p \times q}{n \times p}$ OR (1/2 mark) $1.33 = \frac{1}{a}$ 0.75 = q $\therefore q = \frac{1}{1.33}$ \therefore q = 0.75 or = $\frac{3}{4}$ q = 0.75 OR = $\frac{3}{4}$ we have p + q = 1i.e. p = 1 - q(1/2 mark) = 1 - 0.75 $OR = \frac{1}{4}$ = 0.25 \therefore substitute p = $\frac{1}{4}$ in equation (i) $3.5 = n \times \frac{1}{4}$ $3.5 \times 4 = n$ (1/2 mark) ∴ n = 14 (2) (vi) Given : \bar{x} = 53, \bar{y} = 28, b_{yx} = -1.5, b_{xy} = -0.2Using regression equation of Y on X, we estimate Y when X = 50. Now, $y - \overline{y} = b_{yx}(x - \overline{x})$ ∴ y – 28 = – 1.5 (x – 53) (1 mark) \therefore y = -1.5x + 79.5 + 28 ∴ y = -1.5x + 107.5



We take marks in Physics on X - axis and marks in Mathematics on Y - axis and plot the (vii) points as below.



We get a band of points rising from left to right. This indicates the positive correlation between marks in physics and marks in Mathematics. (1 mark for graph and 1 mark for conclusion)

(1/2 mark)

0.3, Cov (x, y) = 12, $\sigma_x^2 = 9$: $\sigma_x = 3$. (1/2 mark)

Now, $r = \frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$

$$\therefore 0.3 = \frac{12}{3 \times \sigma_y}$$
 (1/2 mark)

$$\therefore \ 0.3 = \frac{4}{\sigma_y} \qquad \qquad \therefore \ \sigma_y = \frac{4}{0.3}$$

$$\therefore \sigma_y = 13.33. \qquad (1/2 \text{ mark})$$

ANSWER : 5(A)

(i)

Given : $l_0 = 1000$, $l_1 = 900$, $l_2 = 700$, $T_2 = 11500$ (1/2 mark) (2)

(2)

We have, $L_x = \frac{l_x + l_{x+1}}{2}$ $\therefore L_0 = \frac{l_0 + l_1}{2} = \frac{1000 + 900}{2} = \frac{1900}{2} = 950$ (1/2 mark) $L_1 = \frac{l_1 + l_2}{2} = \frac{900 + 700}{2} = \frac{1600}{2} = 800$ We have, $T_x = L_x + T_{x+1}$ $\therefore T_1 = L_1 + T_2$ $\therefore T_1 = 800 + 11500$ (1/2 mark) $\therefore T_1 = 12300$ and $T_0 = L_0 + T_1$ $\therefore T_0 = 950 + 12300$

Now, we know that,

∴ T₀ = 13250

$$e_{x}^{\circ} = \frac{T_{x}}{l_{x}}$$

$$\therefore e_{0}^{\circ} = \frac{T_{0}}{l_{0}} = \frac{13250}{1000} = 13.25 \qquad (1/2 \text{ mark})$$

$$e_{1}^{\circ} = \frac{T_{1}}{l_{1}} = \frac{12300}{900} = 13.667 \qquad (1/2 \text{ mark})$$

$$e_{2}^{\circ} = \frac{T_{2}}{l_{2}} = \frac{11500}{700} = 16.428 \qquad (1/2 \text{ mark})$$

(3)

(ii)

Age group (years)	То	wn I	Том	/n ll
	Pi	Di	Pi	Di
0 - 10	1500	45	6000	150
10 – 25	5000	30	6000	40
25 – 45	3000	15	5000	20
45 & above	500	22	3000	54
Total	$\Sigma P_{i} = 10000$	$\Sigma D_i = 112$	$\Sigma P_{i} = 20000$	$\Sigma D_i = 264$

Town I:

$$CDR_{I} = \frac{\sum D_{i}}{\sum P_{i}} \times 1000 = \frac{112}{10000} \times 1000$$
 (1 mark)

 \therefore CDR_I = 11.2 per thousand

Town II :

$$CDR_{II} = \frac{\sum D_i}{\sum P_i} \times 1000 = \frac{264}{20000} \times 1000 = \frac{132}{10}$$
 (1 mark)

Comment : $CDR_{I} < CDR_{II}$.

Town I is more healthy than Town II.

(1 mark)

(iii)

Jobs	1	2	3	4	5
M ₁	5	11	5	7	6
M ₂	1	4	2	5	3
M ₃	1	5	2	3	4

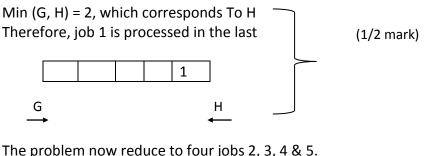
Here $min(M_1) = 5$, Max $(M_2) = 5$ Min. $(M_3) = 1$

Since, $Min(M_1) \ge Max(M_2)$ is satisfied, the problem can be converted into 5 jobs and 2 machines problem.

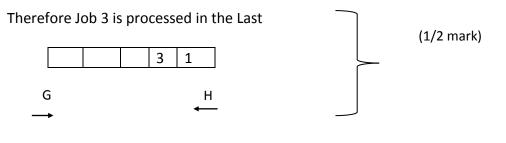
Now, the two fictitious machines are such that $G = M_1 + M_2$ and $H = M_2 + M_3$

The problem can be written as the following 5 job and 2 machine problem.

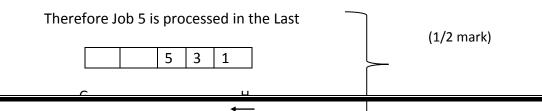
Job	1	2	3	4	5
G	6	15	7	12	18
Н	2	9	4	8	7



The problem now reduce to four jobs 2, 3, 4 & 5. Here, min (G, H) = 4, which corresponds to H

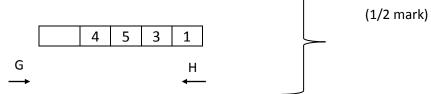


The problem now reduce to three jobs 2, 4 & 5. Here, min (G, H) = 7, which corresponds to H

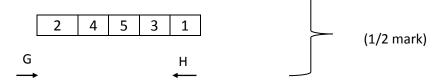


(3)

The problem now reduce to two 2 & 4. Here min (G, H) = 8, which corresponds to H Therefor job 4 is processed in the last \neg



Now, the remaining job 2 must be processed next to job 4, Thus, the optimal sequence of jobs is obtained as follows :



ANSWER : 5 (B)

(i) Let X = Marks in History, Y = Marks in Geography, we construct the following table to compute rank correlation coefficient :

X	Y	Ranks of X	Ranks of Y	d _i = (x _i - y _i)	d_i^2	
		x_i	<i>y</i> _i			
70	80	1.5	1.5	0	0	
70	60	1.5	5	- 3.5	12.25	(1/2 month)
65	80	3	1.5	1.5	2.25	(1/2 mark) for table
60	70	4	3	1	1.00	
55	65	5	4	1	1.00	
50	50	6	6	0	0	
40	42	7	7	0	0	
30	28	8	8	0	0	
n = 8	-	_	_	_	$\sum d_i^2$ = 16.50	

Here, in the series of X, 70 is repeated twice. So there is one tie in which m = 2 (1/2 mark)

:.
$$T_x = \frac{m(m^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} = \frac{2 \times 3}{12} = 0.5$$

In the series of Y, 80 is repeated twice. So there is one tie in which m = 2.

$$T_{y} = \frac{m(m^{2}-1)}{12} = \frac{2(2^{2}-1)}{12} = \frac{2 \times 3}{12} = 0.5$$

$$Corrected \sum d_{i}^{2} = \sum d_{i}^{2} + T_{x} + T_{y}$$

$$= 16.50 + 0.5 + 0.5 = 17.50$$
Rank correlation coefficient :
$$R = 1 - \frac{6[Corrected \sum d_{i}^{2}]}{n(n^{2}-1)}$$

$$= 1 - \frac{6(17.50)}{8(8^{2}-1)} = 1 - \frac{105}{8 \times 63} = 1 - \frac{105}{504}$$

$$= 1 - 0.21 = 0.79$$
(1/2 mark)

(1/2 mark)

∴ R = 0.79 ≈ 0.80

ROW MINIMA

(ii) **Step : 1 :** Subtract the smallest element in each row from every element in that row. We get

Tasks	Time required (man – hours)						
	Subordinates						
	1	1 2 3 4					
А	0	18	9	3			
В	9	24	0	22			
С	23	4	3	0			
D	9	16	14	0			

(1 mark)

COLUMN MINIMA

Step : 2 Subtract the smallest element in each column from every element in that column. We get

Tasks	Tin						
		Subordinates					
	1	2	3	4			
А	-0		9		(1 mark)		
В	-9	20	0				
С	23	0	3	0-			
D	-9	12	14	0			

Step : 3 Since the number of straight lines covering all zeros is equal to number of rows / columns, the optimum solution has reached. The optimal assignment can be made as follows :

Tasks	Time required (man – hours)						
	Subordinates						
	1	1 2 3 4					
А	0	14	9	3			
В	9	20	0	22			
С	23	0	3	X			
D	9	12	14	0			

(1 mark)

Hence, the optimum assignment schedule is obtained as follows :

Tasks	Subordinate	Time
		(man – hours)
А	1	8
В	3	4
С	2	19
D	4	10

(1 mark)

: Minimum requirement of man – hours = 41 hours

(iii) Let $u_i = x_i - 45$ and $v_i = y_i - 150$

So $\sum u_i = 45$, $\sum u_i^2 = 4400$,

 $\sum v_i = 280,$ $\sum v_i^2 = 167432,$

$\sum u_i v_i = 21680$	(0.5 Mark)
$\therefore \qquad \overline{u} = \frac{\sum u_i}{n} = \frac{45}{8} = 5.625$	(0.5 Mark)
$\bar{\upsilon} = \frac{\Sigma v_i}{n} = \frac{280}{8} = 35$	(0.5 Mark)
$\sigma_u^2 = \frac{\sum u_i^2}{n} - (\bar{u})^2$	
$=\frac{4400}{8} - (5.625)^2 = 518.3593$	(0.5 Mark)
$\sigma_v^2 = \frac{\sum v_i^2}{n} - (\bar{v})^2$	
$=\frac{167432}{8}-(35)^2=19704$	(0.5 Mark)
$Cov\left(u,v\right) = \frac{\sum u_i v_i}{n} - \bar{u}\bar{v}$	
$=\frac{21680}{8}-(5.625)$ (35)	
= 2513.125	(0.5 Mark)
om the properties of regression coefficients, you know that they are independent o	of change of

From the properties of regression coefficients, you know that they are independent of change of origin.

So
$$b_{YX} = b_{VU} = \frac{cov(U,V)}{\sigma_U^2} = \frac{2513.125}{518.3593} = 4.8482$$
 (0.5 Mark)
and $b_{XY} = b_{UV} = \frac{cov(U,V)}{\sigma_v^2} = \frac{2513.125}{19704} = 0.1275$ (0.5 Mark)

ANSWER : 6(A)

Let x₁ : Number of executive single rooms.
 and
 x₂ : Number of executive double rooms.
 (0.5 Mark)

Since manager of hotel plans an extension of not more than 50 rooms, therefore $x_1 + x_2 \le 50$

Hotel must have at least 5 executive single rooms.

$$\therefore x_1 \ge 5 \tag{0.5 Mark}$$

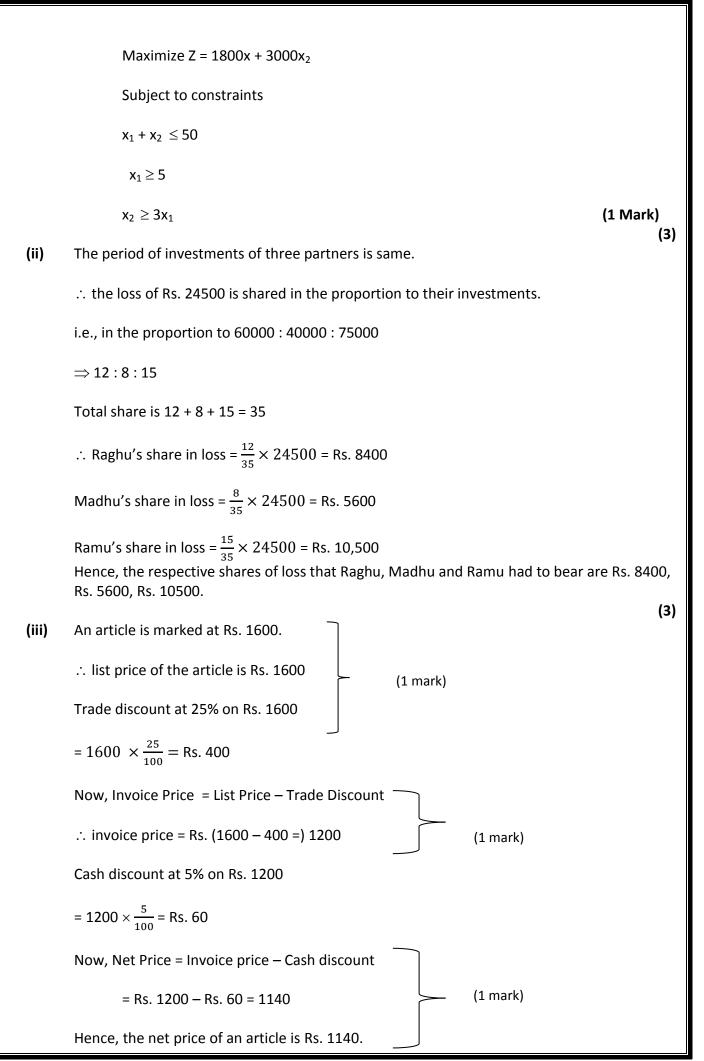
Since the number of executive double rooms should be at least 3 times, the number of executive single rooms.

 $\therefore \mathbf{x}_2 \ge \mathbf{3}x_1$

Since hotel manager charges Rs. 3000 for an executive double room and Rs. 1800 for executive single room per day, total profit is Rs. $(1800x_1 + 3000x_2)$. Let us denote this total profit by Z. (0.5 Mark)

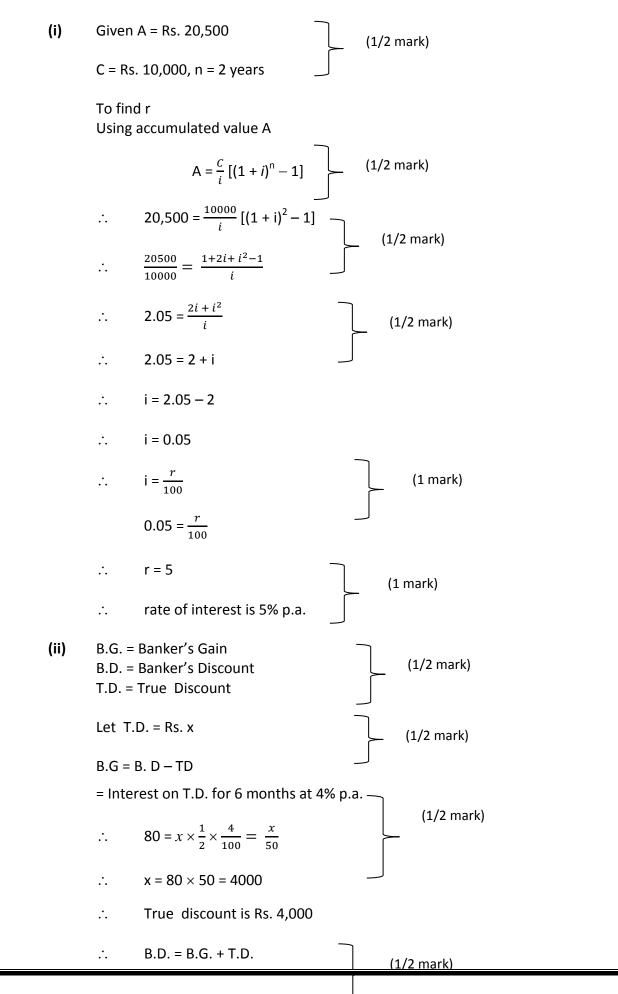
 \therefore Royal hotel manager's problem is to determine x_1 and x_2 so as to

(0.5 Mark)

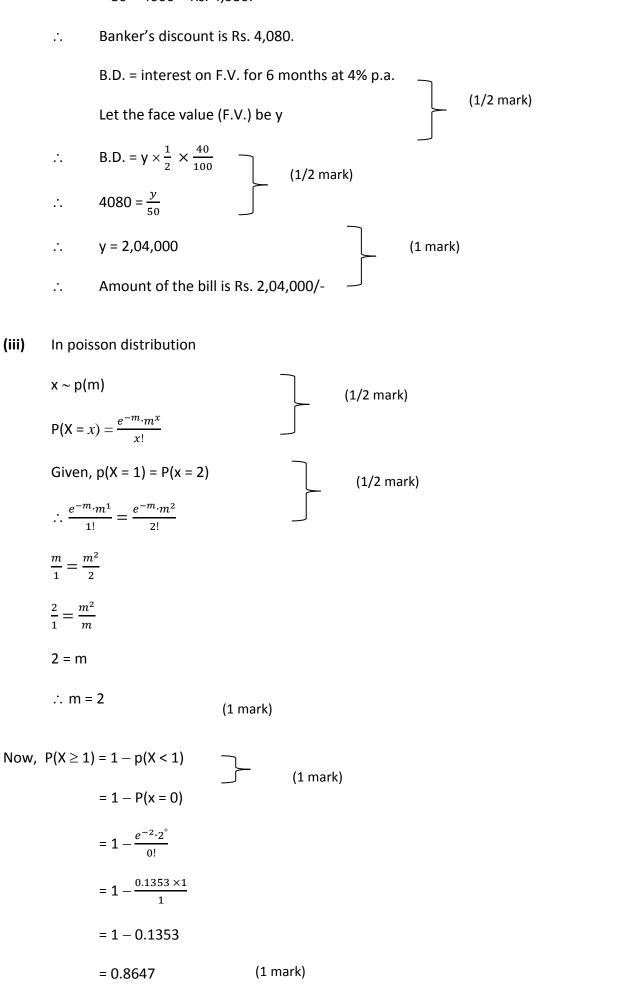


(3)

ANSWER : 6(B)



= 80 + 4000 = Rs. 4,080.



(4)

