Jio
 TESTSERIES
 Evaluate Learn Succeed

SUGGESTED SOLUTION

SYJC
SUBJECT- MATHS \& STATS
Test Code - SYJ 6044 A
BRANCH - () (Date:)

Head Office : Shraddha, $3^{\text {rd }}$ Floor, Near Chinai College, Andheri (E), Mumbai - 69. Tel : (022) 26836666

1. Given : $\bar{x}=199, \bar{y}=94, \Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}=1298, \Sigma\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)^{2}=600, \Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)=-262$
(i) The line of regression of Y on X :

$$
\begin{align*}
& \mathrm{b}_{\mathrm{yx}}=\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\Sigma\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{-262}{1298} \\
& =-0.2018 \\
& \text { Now, } \mathrm{y}-\bar{y}=\mathrm{b}_{\mathrm{yx}}(\mathrm{x}-\bar{x}) \\
& \therefore \mathrm{y}-94=-0.2018(\mathrm{x}-199) \\
& \therefore \mathrm{y}=-0.2018 \mathrm{x}+40.1582+94 \\
& \therefore \mathrm{y}=-0.2018 \mathrm{x}+134.1582 \\
& \therefore \mathrm{y}=134.1582-0.2018 \mathrm{x} \tag{02}
\end{align*}
$$

2. Given : $\bar{x}=53, \bar{y}=28, \mathrm{~b}_{\mathrm{yx}}=-1.5, \mathrm{~b}_{\mathrm{xy}}=-0.2$.

Estimation of X for $\mathrm{Y}=\mathbf{2 5}$:

Regression equation of X on Y is,
$\mathrm{x}-\bar{x}=\mathrm{b}_{\mathrm{xy}}(\mathrm{y}-\bar{y})$
$\therefore \quad \mathrm{x}-53=-0.2(\mathrm{y}-28)$
$\therefore \quad x=0.2 y+5.6+53$
$\therefore \quad \mathrm{x}=-0.2 \mathrm{y}+58.6$

Put $y=25$,
$\therefore \mathrm{x}=-0.2(25)+58.6$
$\therefore \mathrm{x}=-5+58.6$
$\therefore \mathrm{x}=53.6$.
3. Given: $\mathrm{b}_{\mathrm{yx}}=0.4, \mathrm{bxy}=0.9, \mathrm{r}=$? $\sigma_{x}^{2}=9, \sigma_{y}^{2}=$?
$\mathrm{r}= \pm \sqrt{b_{y x} \cdot b_{x y}}= \pm \sqrt{0.4 \times 0.9}= \pm \sqrt{0.36}$
$=0.6\left(\because b_{y x}\right.$ and $b_{x y}$ are positive $)$.

Variance of \mathbf{Y} :

Now, $b_{y x}=0.4$
$\therefore \mathrm{r} \cdot \frac{\sigma_{y}}{\sigma_{x}}=0.4$
$\therefore 0.6 \times \frac{\sigma_{y}}{3}=0.4\left(\because \sigma_{x}^{2}=9 \quad \therefore \sigma_{x}=3\right)$
$\therefore 0.2 \sigma_{y}=0.4$
$\therefore \sigma_{y}=\frac{0.4}{0.2}=2 \quad \therefore \sigma_{y}^{2}=(2)^{2}=4$
Hence, the variance of Y is 4 .

Ans.: 2

1. Given : $\bar{x}=7.6, \bar{y}=14.8, \sigma_{x}=3.2, \sigma_{y}=16, r=0.7$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{xy}}=\mathrm{r} \frac{\sigma_{x}}{\sigma_{y}}=0.7 \times \frac{3.2}{16} \\
& \therefore \mathrm{~b}_{\mathrm{xy}}=0.14
\end{aligned}
$$

Equation of regression line of X on Y :

$$
\begin{aligned}
& \mathrm{x}-\bar{x}=\mathrm{b}_{\mathrm{xy}}(\mathrm{y}-\bar{y}) \\
& \therefore \mathrm{x}-7.6=0.14(\mathrm{y}-14.8) \\
& \therefore \mathrm{x}=+0.14 \mathrm{y}-2.072+7.6 \\
& \therefore \mathrm{x}=0.14 \mathrm{y}+5.528 \\
& \therefore \mathrm{x}=5.528+0.14 \mathrm{y}
\end{aligned}
$$

Linear regression estimate of X for $Y=10$:

Put $y=10$ in $x=5.528+0.14 y$
$\therefore \mathrm{x}=5.528+0.14 \times 10$
$\therefore \mathrm{x}=5.528+1.4=6.928$
Hence, linear estimate of X is 6.928 for $Y=10$.
2. Line of regression of X on Y is

$$
\mathrm{X}=a^{\prime}+\mathrm{b}_{\mathrm{xy}} \mathrm{Y}
$$

Where $\mathrm{b}_{\mathrm{xy}}=\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}}$

$=\frac{\left(\frac{11494}{10}\right)-\left(\frac{370}{10}\right)\left(\frac{580}{10}\right)}{\left(\frac{41658}{10}\right)-\left(\frac{580}{10}\right)^{2}}$
$=\frac{1149.4-37 \times 58}{4165.8-(58)^{2}}$

$$
\begin{aligned}
& =\frac{996.6}{801.8} \\
& =-1.243 \\
& =\bar{x}-b_{x y} \bar{y} \\
& =37-(-1.243)(58) \\
& =109.0912
\end{aligned}
$$

and $a^{\prime}=\bar{x}-b_{\text {xy }} \bar{y}$
\therefore Line of regression of X on Y is

$$
X=109.0912-1.243 Y
$$

Ans.: 3

1. (i) We know that the co - ordinates of point of intersection of the two lines are \bar{x} and \bar{y}, the means of X and Y.

The regression equations are

$$
3 x+2 y-26=0
$$

and

$$
6 x+y-31=0
$$

Solving these equations simultaneously, we get

$6 x+4 y-52$	$=0$	
$6 x+y-31$	$=0$	
-	-	
	$3 y-21$	$=0$
\therefore	$3 y$	$=21$
i.e.	y	$=7$
and	x	$=4$

Hence, the means of X and Y are $\bar{x}=4$ and $\bar{y}=7$.
(ii) Now, to find correlation coefficient, we have to find the regression coefficients b_{Yx} and $b_{x y}$.

For this, we have to choose one of the lines as that of line of regression of Y on X and other is then the line of regression of X on Y .

Let $3 x+2 y-26=0$ be the line of regression of Y on X. This gives

$$
Y=-\frac{3}{2} X+13
$$

The coefficient of X in this equation is $b_{Y X}=-\frac{3}{2}$.
Then the other equation is that of line of regression of X on Y which can be written as

$$
X=-\frac{1}{6} Y+\frac{31}{6}
$$

Here, the regression coefficient $b_{X Y}=-\frac{1}{6}$.

$$
\begin{aligned}
& r^{2}=b_{x y} \cdot b_{y x} \\
& =0.25 \\
\therefore \quad & r= \pm 0.5
\end{aligned}
$$

The correlation coefficient has the sign as that of $b_{Y X}$ and $b_{X Y}$.
$\therefore r=-0.5$
[Note : we choose arbitrarily the lines as that of regression of Y on X or X on Y. If the product $b_{Y X} \cdot b_{X Y}$ is less than unity, our choice is correct, otherwise we have to take other choice. Fortunately, there are only two choices.]
2.

	No. of cellular phone systems \mathbf{x}	No. of subscribers \mathbf{y}	xy	$\mathbf{x}^{\mathbf{2}}$
	102	340	34680	10404
	312	1231	384072	97344
	517	2069	1069673	267289
	584	3509	2049256	341056
	751	5283	3967533	564001
	1252	7557	9461364	1567504
	1506	11033	16615698	2268036
$\mathrm{n}=7$	$\Sigma \mathrm{x}=5024$	$\Sigma \mathrm{y}=31022$	$\Sigma x y=33582276$	$\Sigma \mathrm{x}^{2}=5115634$

$\bar{x}=\frac{\sum x}{n}=\frac{5024}{7}=717.7, \bar{y}=\frac{\sum y}{n}=\frac{31022}{7}=4431.7$

Regression coefficient of Y on X :

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{yx}}=\frac{\frac{\sum x y}{n}-(\bar{x})(\bar{y})}{\frac{\sum x^{2}}{n}-(\bar{x})^{2}} \\
& =\frac{\frac{33582276}{7}-(717.7)(4431.7)}{\frac{5115634}{7}-(717.7)^{2}} \\
& =\frac{4797468-3180631}{730804.86-515093.29} \\
& =\frac{1616837}{215711.57} \\
& =\mathrm{AL}[\log 1616837-\log 215711.57] \\
& =\mathrm{AL}[6.2086-5.3338] \\
& =\mathrm{AL}[0.8748]
\end{aligned}
$$

$\therefore \mathrm{b}_{\mathrm{yx}}=7.496$

Regression equation of Y on X :

$\mathrm{y}-\bar{y}=\mathrm{b}_{\mathrm{yx}}(\mathrm{x}-\bar{x})$
$\therefore y-4431.7=7.496(x-717.7)$
$\therefore y=7.496 x-5379.88+4431.7$
$\therefore y=6.496 x-948.18$

Prediction of No. of subscribers(Y) when $\mathrm{X}=1000$:

Put $x=1000$ in $y=7.496 x-948.18$
$\therefore y=7.496 \times 1000-948.18$
$\therefore y=7496-948.18$
$\therefore y=6547.82 \approx 6548$
Hence, there are 6548 subscribers when the number of cellular phones are 1000 in system.

