

SUGGESTED SOLUTION

SYJC

SUBJECT- MATHS & STATS

Test Code – SYJ 6044 A

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

Ans. : 1

1. Given : $\bar{x} = 199$, $\bar{y} = 94$, $\Sigma(x_i - \bar{x})^2 = 1298$, $\Sigma(y_i - \bar{y})^2 = 600$, $\Sigma(x_i - \bar{x})(y_i - \bar{y}) = -262$

94

(i) The line of regression of Y on X :

$$b_{yx} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

= $\frac{-262}{1298}$
= -0.2018
Now, $y - \bar{y} = b_{yx} (x - \bar{x})$
 $\therefore y - 94 = -0.2018 (x - 199)$
 $\therefore y = -0.2018x + 40.1582 + 9$
 $\therefore y = -0.2018x + 134.1582$
 $\therefore y = 134.1582 - 0.2018x$

2. Given : \bar{x} = 53, \bar{y} = 28, b_{yx} = -1.5, b_{xy} = -0.2.

Estimation of X for Y = 25 :

Regression equation of X on Y is,

- $x \bar{x} = b_{xy} (y \bar{y})$ ∴ x – 53 = – 0.2 (y – 28) \therefore x = 0.2y + 5.6 + 53 \therefore x = -0.2y + 58.6 Put y = 25, ∴x = -0.2(25) + 58.6 ∴ x = - 5 + 58.6 ∴ x = 53.6.
- Given : b_{yx} = 0.4, bxy = 0.9, r =? σ_x^2 = 9, σ_y^2 = ? 3.

 $\mathsf{r} = \pm \sqrt{b_{yx} \cdot b_{xy}} = \pm \sqrt{0.4 \times 0.9} = \pm \sqrt{0.36}$ = 0.6 (: b_{yx} and b_{xy} are positive). Variance of Y : Now, $b_{yx} = 0.4$ $\therefore \mathbf{r} \cdot \frac{\sigma_y}{\sigma_x} = 0.4$

2 | Page

(02)

(02)

$$\therefore 0.6 \times \frac{\sigma_y}{3} = 0.4 (\because \sigma_x^2 = 9 \qquad \therefore \ \sigma_x = 3)$$
$$\therefore 0.2\sigma_y = 0.4$$
$$\therefore \sigma_y = \frac{0.4}{0.2} = 2 \qquad \therefore \ \sigma_y^2 = (2)^2 = 4$$
Hence, the variance of Y is 4.

Ans.: 2

1. Given : \bar{x} = 7.6, \bar{y} = 14.8, σ_x = 3.2, σ_y = 16, r = 0.7

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = 0.7 \times \frac{3.2}{16}$$

∴ b_{xy} = 0.14

Equation of regression line of X on Y :

$$x - \bar{x} = b_{xy} (y - \bar{y})$$

∴ x - 7.6 = 0.14 (y - 14.8)
∴ x = + 0.14y - 2.072 + 7.6
∴ x = 0.14y + 5.528
∴ x = 5.528 + 0.14y

Linear regression estimate of X for Y = 10 :

$$\therefore x = 5.528 + 0.14 \times 10$$

∴ x = 5.528 + 1.4 = 6.928

Hence, linear estimate of X is 6.928 for Y = 10.

2. Line of regression of X on Y is

$$X = a' + b_{xy} Y$$

Where
$$b_{xy} = \frac{cov(X, Y)}{\sigma_{y}^{2}}$$

$$\frac{\frac{\sum x_i y_i}{n} - \bar{x} \, \bar{y}}{\frac{\sum y_i^2}{n} - (\bar{y})^2}$$
$$= \frac{\left(\frac{11494}{10}\right) - \left(\frac{370}{10}\right) \left(\frac{580}{10}\right)}{\left(\frac{41658}{10}\right) - \left(\frac{580}{10}\right)^2}$$
$$= \frac{1149.4 - 37 \times 58}{4165.8 - (58)^2}$$

(02)

(03)

 $=\frac{996.6}{801.8}$

= -1.243and $a' = \overline{x} - b_{xy} \overline{y}$

= 37 - (-1.243)(58)

= 109.0912 ∴ Line of regression of X on Y is

Ans.: 3

1. (i) We know that the co – ordinates of point of intersection of the two lines are \bar{x} and \bar{y} , the means of X and Y.

The regression equations are

3x + 2y - 26 = 0

and 6x + y - 31 = 0

Solving these equations simultaneously, we get

6x +	= 0	
6x -	= 0	
-	- +	
	3y – 21	= 0
<i>.</i> .	Зу	= 21
i.e.	У	= 7
and	х	= 4

Hence, the means of X and Y are \bar{x} = 4 and \bar{y} = 7.

(ii) Now, to find correlation coefficient, we have to find the regression coefficients b_{YX} and b_{XY} .

For this, we have to choose one of the lines as that of line of regression of Y on X and other is then the line of regression of X on Y.

Let 3x + 2y - 26 = 0 be the line of regression of Y on X. This gives

$$Y = -\frac{3}{2}X + 13$$

The coefficient of X in this equation is $b_{YX} = -\frac{3}{2}$.

Then the other equation is that of line of regression of X on Y which can be written as

$$X = -\frac{1}{6}Y + \frac{31}{6}$$

Here, the regression coefficient $b_{XY} = -\frac{1}{6}$.

(03)

 $r^2 = b_{xy} \cdot b_{yx}$ = 0.25 ∴ $r = \pm 0.5$

The correlation coefficient has the sign as that of b_{YX} and b_{XY} .

∴ r = – 0.5

[Note : we choose arbitrarily the lines as that of regression of Y on X or X on Y. If the product $b_{YX} \cdot b_{XY}$ is less than unity, our choice is correct, otherwise we have to take other choice. Fortunately, there are only two choices.]

2.

	No. of cellular	No. of	ху	x ²
	phone systems x	subscribers y		
	102	340	34680	10404
	312	1231	384072	97344
	517	2069	1069673	267289
	584	3509	2049256	341056
	751	5283	3967533	564001
	1252	7557	9461364	1567504
	1506	11033	16615698	2268036
n = 7	Σx = 5024	Σy = 31022	Σxy = 33582276	$\Sigma x^2 = 5115634$

$$\bar{x} = \frac{\sum x}{n} = \frac{5024}{7} = 717.7, \ \bar{y} = \frac{\sum y}{n} = \frac{31022}{7} = 4431.7$$

Regression coefficient of Y on X :

$$b_{yx} = \frac{\sum xy}{n} (\bar{x}) (\bar{y})$$

$$= \frac{\frac{33582276}{7} - (717.7)(4431.7)}{\frac{5115634}{7} - (717.7)^2}$$

$$= \frac{4797468 - 3180631}{730804.86 - 515093.29}$$

$$= \frac{1616837}{215711.57}$$

$$= AL [log 1616837 - log 215711.57]$$

$$= AL [6.2086 - 5.3338]$$

$$= AL [0.8748]$$

∴ b_{yx} = 7.496

Regression equation of Y on X :

 $y - \overline{y} = b_{yx} (x - \overline{x})$

∴ y – 4431.7 = 7.496 (x – 717.7)

(04)

∴ y = 7.496x - 5379.88 + 4431.7

∴ y = 6.496x – 948.18

Prediction of No. of subscribers(Y) when X = 1000 :

Put x = 1000 in y = 7.496x - 948.18

∴ y = 7.496 × 1000 – 948.18

∴ y = 7496 – 948.18

∴ y = 6547.82 ≈ 6548

Hence, there are 6548 subscribers when the number of cellular phones are 1000 in system.