Jio TEST SERIES Evaluate Learn Succeed

SUGGESTED SOLUTION

SYJC
SUBJECT- MATHS \& STATS
Test Code - SYJ 6043 A
BRANCH - () (Date:)

Head Office : Shraddha, $3^{\text {rd }}$ Floor, Near Chinai College, Andheri (E), Mumbai - 69. Tel : (022) 26836666

1. Here we take distance on X - axis and time on Y - axis and plot the points as below

Distance in kms

Since all the points lie on the straight line rising from left to right, there is perfect positive correlation between distance and time for the train.
2. Given $\mathrm{R}=0.6, \sum d_{i}^{2}=66$

$$
\begin{array}{ll}
\therefore & \mathrm{R}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)} \\
\therefore & 0.6=1-\frac{6 \sum d^{2}{ }_{i}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6 \times 66}{n\left(n^{2}-1\right)}
\end{array}
$$

$$
\therefore \frac{6 \times 66}{n\left(n^{2}-1\right)}=0.4
$$

$\therefore n\left(n^{2}-1\right)=\frac{6 \times 66}{0.4}=990$
$\therefore(n-1)(n)(n+1)=990=9 \times 10 \times 11$
$\therefore \mathrm{n}=10$.
3. Given : $r=0.48, \operatorname{Cov}(x, y)=36, \operatorname{Var}(x)=16 \quad \therefore \sigma_{x}=4$

Now, $\mathrm{r}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}}$
$\therefore 0.48=\frac{36}{4 \times \sigma_{y}} \quad \therefore 0.48=\frac{9}{\sigma_{y}} \quad \therefore 0.48 \sigma_{\mathrm{y}}=9 \quad \therefore \sigma_{\mathrm{y}}=\frac{9}{0.48}$

Hence, S.D. of y is 18.75 .

Ans.: 2

1. (i) Marginal frequency distribution of age of husband :

Age of husband (in yrs)	$20-30$	$30-40$	$40-50$	$50-60$	Total
No. of husbands	5	20	44	24	93

(ii) Conditional frequency distribution of age of husbands when age of wives lie in 25-35:

Age of husband (in yrs)	$20-30$	$30-40$	$40-50$	$50-60$	Total
No. of husbands	0	10	25	2	37

(iii) Couples with age of husbands above 40 years and of wives below 45 years :

$$
\begin{aligned}
& =\text { Sum of frequencies of cell }(1,3) \text {, cell }(2,3) \text {, cell }(2,4) \text {, cell }(3,3) \text { and cell }(3,4) \\
& =3+25+2+12+2=44
\end{aligned}
$$

Hence, 44 couples with age of husband above 40 years and age of wives below 45 years.
2. Given : $\mathrm{r}=0.4, \Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)=108, \sigma_{\mathrm{y}}=3$ and $\Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}=900$
$\Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}=900$
Now, $\mathrm{r}=\frac{\frac{1}{n} \Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{x} \cdot \sigma_{y}}$

$$
=\frac{\frac{1}{n} \Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}} \times \sigma_{y}}
$$

Putting $\mathrm{r}=0.4, \Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=108, \sigma_{\mathrm{y}}=3$,
$\Sigma\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}=900$ in the formula, we get
$0.4=\frac{\frac{1}{n} \times 108}{\sqrt{\frac{900}{n} \times 3}}$
$\therefore \quad 0.4=\frac{36}{n \times \sqrt{\frac{900}{n}}}$
$\therefore \quad 0.4=\frac{36}{\sqrt{n} \cdot \sqrt{900}}$
$\therefore \quad 0.16=\frac{1296}{n \times 900}$ \qquad .(Taking square of both sides)
$\therefore \quad 0.16 \times \mathrm{n} \times 900=1296$
$\therefore \quad 144 n=1296$
$\therefore \quad n=\frac{1296}{144}$
$\therefore \quad \mathrm{n}=9$

1. Let us give ranks to the values of X and Y by assigning rank 1 to the highest value and next highest the ranked 2 etc.

Table 5.16

\mathbf{X}	\mathbf{Y}	Rank of \mathbf{X}	Rank of \mathbf{Y}	$\mathbf{d}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}-\mathbf{y}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}$
		$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$		
50	110	8	9.5	-1.5	2.25
55	110	6.5	9.5	-3.0	9.00
65	115	3.5	7	-3.5	12.25
50	125	8	4	4.0	16.00
55	140	6.5	2	4.5	20.25
60	115	5	7	-2.0	4.00
50	130	8	3	5.0	25.00
65	120	3.5	5	-1.5	2.25
70	115	2	7	-5.0	25.00
75	160	1	1	0.0	0.00
				Total	116.00

Here, in series X, 50 is repeated thrice, 55 is repeated twice, 65 is repeated twice. In series $Y 110$ is repeated twice and 115 is repeated thrice.
$\therefore \mathrm{T}_{\mathrm{x}}=\frac{3\left(3^{2}-1\right)}{12}+\frac{2\left(2^{2}-1\right)}{12}+\frac{2\left(2^{2}-1\right)}{12}=3$
$\mathrm{T}_{\mathrm{y}}=\frac{2\left(2^{2}-1\right)}{12}+\frac{3\left(3^{2}-1\right)}{12}=2.5$
Corrected $\sum d^{2}{ }_{i}=\sum d^{2}{ }_{i}+\mathrm{T}_{\mathrm{x}}+\mathrm{T}_{\mathrm{y}}$

$$
\begin{aligned}
& =116+3+2.5 \\
& =121.5
\end{aligned}
$$

$\therefore \mathrm{R}=1-\frac{6\left[\text { corrected } \sum d^{2}{ }_{i}\right]}{n\left(n^{2}-1\right)}$
$=1-\frac{6 \times 121.5}{10\left(10^{2}-1\right)}$
$=1-\frac{729}{990}$
$=\frac{261}{990}=0.26$
2. Given: $\mathrm{n}=25, \sum \mathrm{x}_{\mathrm{i}}=125, \sum x_{i}^{2}=650, \sum \mathrm{y}_{\mathrm{i}}=100, \sum y_{i}^{2}=460, \sum \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=508$.

Wrong pairs of observations : $(6,14),(8,6)$
Correct pairs of observations : $(8,12),(6,8)$

Corrected $\sum x_{i}=\sum x_{i}=$ (Sum of wrong observations) + (Sum of correct observations)

$$
\begin{aligned}
& =125-(6+8)+(8+6) \\
& =125-14+14=125
\end{aligned}
$$

$\sum x_{i}^{2}$ - (sum of squares of wrong observations) + (sum of squares of correct observations)

$$
\begin{aligned}
& =650-\left(6^{2}+8^{2}\right)+\left(8^{2}+6^{2}\right) \\
& =650-(36+64)+(64+36) \\
& =650-100+100=650
\end{aligned}
$$

Corrected $\Sigma y_{i}=\Sigma y_{i}-($ Sum of wrong observations $)+($ Sum of correct observations)

$$
\begin{aligned}
& =100-(14+6)+(12+8) \\
& =100-20+20=100
\end{aligned}
$$

Corrected $\sum y_{i}^{2}=$
$\sum y_{i}^{2}-($ Sum of squares of wrong observations) + (Sum of squares of correct observations)

$$
\begin{aligned}
& =460-\left(14^{2}+6^{2}\right)+\left(12^{2}+8^{2}\right) \\
& =460-(196+36)+(144+64) \\
& =460-232+208 \\
& =460-24=436
\end{aligned}
$$

Corrected $\Sigma x_{i} y_{i}=$

$$
\begin{aligned}
\sum x_{i} y_{i}- & \text { (Sum of products of wrong observations) }+(\text { Sum of products of correct observations) } \\
& =508-[(6 \times 14)+(8 \times 6)]+[(8 \times 12)+(6 \times 8)] \\
& =508-(84+48)+(96+48) \\
& =508-132+144 \\
& =508+12=520
\end{aligned}
$$

Correct correlation coefficient :

$$
\text { Correct } \bar{x}=\frac{\text { Corrected } \sum x_{i}}{n}=\frac{125}{25}=5
$$

Correct $\bar{y}=\frac{\text { Corrected } \Sigma y_{i}}{n}=\frac{100}{25}=4$
$\mathrm{r}(\mathrm{x}, \mathrm{y})_{\text {correct }}=\frac{\frac{1}{n}\left(\text { Corrected } \sum x_{i} y_{i}\right)-\operatorname{Correct}(\bar{x} \cdot \bar{y})}{\sqrt{\frac{\text { Corrected } \sum x_{i}^{2}}{n}}-(\text { Correct } \bar{x})^{2} \sqrt{\frac{\operatorname{Correct} \sum y_{i}^{2}}{n}}-(\text { Correct } \bar{y})^{2}}$

$$
=\frac{\frac{1}{25} \times 520-(5 \times 4)}{\sqrt{\frac{650}{25}-(5)^{2} \cdot \sqrt{\frac{436}{25}-(4)^{2}}}}
$$

$=\frac{20.8-20}{\sqrt{26-25} \cdot \sqrt{17.44}-16}$
$=\frac{0.8}{\sqrt{1} \cdot \sqrt{1.44}}$
$=\frac{0.8}{1 \times 1.2}$
$=\frac{0.8}{1.2}=\frac{8}{12}=\frac{2}{3}=0.67$
$\therefore \mathrm{r}(\mathrm{x}, \mathrm{y})_{\text {correct }}=0.67$.

