

SUGGESTED SOLUTION

SYJC

SUBJECT- MATHEMATICS & STATISTICS

Test Code – SYJ 6122

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

SECTION - I

ANSWER:1

- (i) (a) $(p \land q) \land c$ (b) Dhanashree is a doctor or she is clever
- (ii) $|A| = \begin{vmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix}$

 $\therefore |A| = -12 \neq 0$

 \therefore A is nonsingular. Hence A^{-1} exists.

(iii)
$$y = (5x - 3)^x$$

 $\therefore \log y = \log (5x - 3)^x$
 $\therefore \log y = x \log (5x - 3)$
 $\therefore \frac{d}{dx} (\log y) = \frac{d}{dx} x \log (5x - 3)$
 $\therefore \frac{1}{y} \frac{dy}{dx} = x \frac{d}{dx} \log (5x - 3) + \log (5x - 3) \frac{d(x)}{dx}$
 $= \frac{x}{5x - 3} \frac{d}{dx} (5x - 3) + \log (5x - 3)$
 $\therefore \frac{1}{y} \frac{dy}{dx} = \frac{5x}{5x - 3} + \log (5x - 3)$
 $\therefore \frac{dy}{dx} = y [\frac{5x}{5x - 3} + \log (5x - 3)]$
 $\therefore \frac{dy}{dx} = (5x - 3)^x [\frac{5x}{5x - 3} + \log (5x - 3)]$
(iv) Put $\cos x = t$ $\therefore -\sin x \, dx = dt$
 $\therefore \sin x \, dx = -dt$
 $\int \frac{\sin x}{1 + \cos^2 x} \, dx = \int \frac{1}{1 + t^2} (-dt)$
 $= -\int \frac{1}{1 + t^2} \, dt = -tan^{-1}t + c$
 $= -tan^{-1} (\cos x) + c.$
(v) $g(0) = e^{\frac{5}{2}}$ (Given)(1)
 $\lim_{x \to 0} g(x) = \lim_{x \to 0} \left(1 + \frac{5x}{2}\right)^{\frac{2}{x}}$

$$= \lim_{x \to 0} \left\{ \left(1 + \frac{5x}{2} \right)^{\frac{2}{5x}} \right\}^{5}$$

$$= \left\{ \lim_{x \to 0} \left(1 + \frac{5x}{2} \right)^{\frac{2}{5x}} \right\}^{5}$$

$$= e^{5} \qquad \dots \left[x \to 0, \frac{5x}{2} \to 0 \text{ and } \lim_{x \to 0} (1 + \alpha)^{\frac{1}{\alpha}} = e \right]$$

$$\therefore \lim_{x \to 0} g(x) = e^{5}$$
From (1) and (2),

$$\lim_{x \to 0} g(x) \neq g(0)$$

$$\therefore g(x) \text{ is discontinuous at } x = 0.$$
(vi) Given f(x) is continuous at x = 2

$$\therefore \lim_{x \to 2^{2}} f(x) = \lim_{x \to 2^{2^{2}}} f(x) = f(2)$$

$$\therefore \lim_{x \to 2^{2}} \frac{x^{2} + 5}{x - 1} = \lim_{x \to 2^{2}} (kx + 1)$$

$$\therefore \frac{4 + 5}{2 - 1} = k(2) + 1$$

$$\therefore 9 = 2k + 1$$

$$\therefore k = 4$$
(vii) The cost function is given as

$$C = 100 + 600x - 3x^{2}$$

$$\therefore \frac{dC}{dx} = \frac{d}{dx}(100 + 600x - 3x^{2})$$

$$= 0 + 600 \times 1 - 3 \times 2x$$

$$= 600 - 6x$$
If the total cost is decreasing, then $\frac{dC}{dx} < 0$

$$\therefore 600 < 6x$$

$$\therefore x > 100$$

Hence, the total cost is decreasing for x > 100.

(viii) $\begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ = $\begin{bmatrix} 2+6 & 4+9 & 6+3 \\ 1-4 & 2-6 & 3-2 \end{bmatrix}$ = $\begin{bmatrix} 8 & 13 & 9 \\ -3 & -4 & 1 \end{bmatrix}$

ANSWER : 2(A)

(i)

р	q	~q	p∧ ~q	$P \rightarrow q$	$(p \land \sim q) \leftrightarrow (p \rightarrow q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

All the entries in the last column of the above truth table are F.

 \therefore (p \wedge ~q) \leftrightarrow (p \rightarrow q) is a contradiction.

(ii)
$$x^7 x^9 = (x + y)^{16}$$

 $\therefore \log (x^7 y^9) = \log (x + y)^{16}$

 $\therefore \log x^7 + \log y^9 = \log (x + y)^{16}$

$$\therefore$$
 7 log x + 9 log y = 16 log (x + y)

Differentiating both sides w.r.t. x, we get,

$$7 \times \frac{1}{x} + 9 \times \frac{1}{y} \frac{dy}{dx} = 16 \times \frac{1}{x+y} \cdot \frac{d}{dx} (x+y)$$

$$\therefore \frac{7}{x} + \frac{9}{y} \frac{dy}{dx} = \frac{16}{x+y} \left(1 + \frac{dy}{dx}\right)$$

$$\therefore \frac{7}{x} + \frac{9}{y} \frac{dy}{dx} = \frac{16}{x+y} + \frac{16}{x+y} \cdot \frac{dy}{dx}$$

$$\therefore \left(\frac{9}{y} - \frac{16}{x+y}\right) \frac{dy}{dx} = \frac{16}{x+y} - \frac{7}{x}$$

$$\therefore \left[\frac{9x + 9y - 16y}{y(x+y)}\right] \frac{dy}{dx} = \frac{16x - 7x - 7y}{x(x+y)}$$

$$\therefore \left[\frac{9x - 7y}{y(x+y)}\right] \frac{dy}{dx} = \frac{9x - 7y}{x(x+y)}$$

$$\therefore \left[\frac{9x - 7y}{y(x+y)}\right] \frac{dy}{dx} = \frac{9x - 7y}{x(x+y)}$$

$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x}.$$

(iii)
$$\int x^2 \cdot e^{3x} dx$$

Let $I = \int x^2 \cdot e^{3x} dx$
 $= x^2 \cdot \int e^{3x} dx - \int \left[\frac{d}{dx}x^2 \int e^{3x} dx\right] dx$
 $= x^2 \frac{e^{3x}}{3} - \int \left[2x \cdot \frac{e^{3x}}{3}\right] dx$
 $= \frac{1}{3}x^2 \cdot e^{3x} - \frac{2}{3}\int x \cdot e^{3x} dx$
 $= \frac{1}{3}x^2 \cdot e^{3x} - \frac{2}{3}\left\{x \cdot \int e^{3x} dx - \int \left[\frac{d}{dx}(x) \int e^{3x} dx\right] dx\right\}$
 $= \frac{1}{3}x^2 \cdot e^{3x} - \frac{2}{3}\left\{x \cdot \frac{e^{3x}}{3} - \left[\int 1 \cdot \frac{e^{3x}}{3} dx\right]\right\}$
 $= \frac{1}{3}x^2 \cdot e^{3x} - \frac{2}{9}x \cdot e^{3x} + \frac{2}{9} \cdot \frac{e^{3x}}{3} + c$
 $= \frac{1}{3}x^2 \cdot e^{3x} - \frac{2}{9}x \cdot e^{3x} + \frac{2}{27} \cdot e^{3x} + c$
ANSWER : 2(B)

(i) Let the number of benches sold be x. Then profit = S.P. - C.P.i.e., $P(x) = \left(15 - \frac{x}{2000}\right)x - \left(200 + \frac{x}{5}\right)$ $= 15x - \frac{x^2}{2000} - 200 - \frac{x}{5}$ $\therefore P(x) = \frac{74x}{5} - \frac{x^2}{2000} - 200$ $\therefore P'(x) = \frac{d}{dx} \left(\frac{74x}{5} - \frac{x^2}{2000} - 200 \right)$ $=\frac{74}{5} \times 1 - \frac{1}{2000} \times 2x - 0$ $=\frac{74}{5}-\frac{x}{1000}$ and P''(x) = $\frac{d}{dx} \left(\frac{74}{5} - \frac{x}{1000} \right)$ $=0-\frac{1}{1000} \times 1 = -\frac{1}{1000}$ P'(x) = 0 gives $\frac{74}{5} - \frac{x}{1000} = 0$ $\therefore \frac{x}{1000} = \frac{74}{5}$ $\therefore x = \frac{74 \times 1000}{5} = 14800$

and P'' (14800) = $-\frac{1}{1000} < 0$

(ii)

 \therefore P(x) is maximum when x = 14800.

Hence, the number of benches sold for maximum profit is 14800.

By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO. Clearly for this region, the limits of integration are 0 and 2.

$$\frac{y^2}{25} = 1 - \frac{x^2}{4} = \frac{4 - x^2}{4}$$
$$\therefore y^2 = \frac{25}{4} (4 - x^2)$$

In the first quadrant, y > 0

$$\therefore y = \frac{5}{2}\sqrt{4 - x^2}$$

 \therefore area of ellipse = 4(area of the region OABO)

$$= 4\int_{0}^{2} y dx$$

= $4\int_{0}^{2} \frac{5}{2}\sqrt{4-x^{2}} dx$
= $10\int_{0}^{2}\sqrt{4-x^{2}} dx$
= $10\left[\frac{x}{2}\sqrt{4-x^{2}} + \frac{4}{2}\sin^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$
= $10\left[\left\{\frac{2}{2}\sqrt{4-4} + 2\sin^{-1}(1)\right\} - \left\{\frac{0}{2}\sqrt{4-0} + 2\sin^{-1}(0)\right\}\right]$
= $10 \times 2 \times \frac{\pi}{2} = 10 \pi$ sq units.

(iii) $f(x) = 3x + 2, 2 \le x \le 4$ \therefore f(2) = 3(2) + 2 = 8 $f(x) = x^2 + ax + b, x < 2$ $\therefore \lim_{x \to 2^-} f(x) = \lim_{x \to 2} (x^2 + ax + b)$ $= 2^{2} + a(2) + b = 4 + 2a + b$ Since f is continuous at x = 2, $\lim_{x\to 2^-} f(x) = f(2)$ $\therefore 4 + 2a + b = 8$ \therefore 2*a* + *b* = 4(1) f(4) = 3(4) + 2 = 14Also, f(x) = 2ax + 5b, 4 < x $\therefore \lim_{x \to 4^+} f(x) = \lim_{x \to 4} (2ax + 5b)$ = 2a(4) + 5(b) = 8a + 5bSince f is continuous at x = 4, $\lim_{x \to 4^+} f(x) = f(4)$ $\therefore 8a + 5b = 14$(2) Multiplying equation (1) by 5, we get, 10a + 5b = 20Subtracting equation (2) from this equation, we get, 2*a* = 6 ∴ *a* = 3 \therefore from (1), 2(3) + b = 4 $\therefore b = -2$ $\therefore 6 + b = 4$ Hence, a = 3 and b = -2. ANSWER: 3(A) (i) $u = 1 + \sin \theta$, $v = \theta - \cos \theta$ Differentiating u and v w.r.t. θ , we get, $\frac{du}{d\theta} = \frac{d}{d\theta} (1 + \sin \theta) = 0 + \cos \theta$

= $\cos \theta$

and
$$\frac{dv}{d\theta} = \frac{d}{d\theta} (\theta - \cos \theta) = 1 - (-\sin \theta)$$

= 1 + sin θ
 $\therefore \frac{du}{dv} = \frac{(du/d\theta)}{(dv/d\theta)} = \frac{\cos \theta}{1 + \sin \theta}$
 $\therefore \left(\frac{du}{dv}\right)_{at} \theta = \frac{\pi}{4} = \frac{\cos \frac{\pi}{4}}{1 + \sin \frac{\pi}{4}}$
 $= \frac{\left(\frac{1}{\sqrt{2}}\right)}{1 + \frac{1}{\sqrt{2}}} = \frac{\left(\frac{1}{\sqrt{2}}\right)}{\left(\frac{\sqrt{2} + 1}{\sqrt{2}}\right)}$
 $= \frac{1}{\sqrt{2} + 1} = \frac{1}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1}$
 $= \frac{\sqrt{2} - 1}{2 - 1} = \sqrt{2} - 1$
(ii) $\int \sqrt{x^2 + 2x + 5} \, dx$
 $= \int \sqrt{x^2 + 2x + 1 - 1 + 5} \, dx$
 $= \int \sqrt{(x + 1)^2 + 4} \, dx$
 $= \int \sqrt{(x + 1)^2 + 2^2} \, dx$
 $= \frac{1}{2}(x + 1)\sqrt{(x + 1)^2 + 2^2} + \frac{1}{2}(2^2) \log[(x + 1) + \sqrt{x^2 + 2x + 5}] + c$
(iii) The negation of $(\sim p \land \sim q) \lor (p \land \sim q)$ is
 $\sim [(\sim p \land \sim q) \land (p \land \sim q)]$
 $= \sim (\sim p \land \sim q) \land (p \land \sim q)]$
(Negation of disjunction)
 $= [(p \lor q) \land (\sim p \lor q)$ (Negation of negation)
AUCUMPT ~ 20

(i) Let I =
$$\int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\tan x}} = \int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\frac{\sin x}{\cos x}}}$$

$$\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \qquad \dots (i)$$

$$2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$
$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$
$$= [x]_{0}^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2} - 0$$
$$\therefore 2I = \frac{\pi}{2}$$
$$\therefore I = \frac{\pi}{4}$$

(ii)

The given equations can be considered in the matrix equation as

[1	-1	1]	[<i>x</i>]		[4]	
[1 2 1	1	$\begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$	<i>y</i>	=	0	
l1	1	1	$\lfloor_Z \rfloor$		2	

i.e.

Now

AX = B(i) $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$

Here, $|A| = 10 \neq 0$ $\therefore A^{-1}$ exists

Pre multiplying equation (i) by A^{-1} we get

$$(A^{-1}A)X = A^{-1}B$$

i.e. $IX = A^{-1}B$
i.e. $X = A^{-1}B$ (ii)

Now as
$$A^{-1}$$
 exists, consider the equation
 $AA^{-1} = I$
i.e. $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Use $R_2 \rightarrow R_2 - 2R_1$
 $R_3 \rightarrow R_3 - R_1$
 $\therefore \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & -5 \\ 0 & 2 & 0 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$
Use $R_2 \rightarrow R_2 - R_3$
 $\therefore \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -5 \\ 0 & 2 & 0 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$
Use $R_1 \rightarrow R_1 + R_2$
and $R_3 \rightarrow R_3 - 2R_2$
 $\therefore \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -5 \\ 0 & 0 & 10 \end{bmatrix} A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & -2 & 3 \end{bmatrix}$
Use $\frac{1}{10}R_3$
 $\therefore \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & -1 \\ \frac{1}{10} & \frac{-2}{10} & \frac{3}{10} \end{bmatrix}$
Use $R_1 \rightarrow R_1 + 4R_3$
 $R_2 \rightarrow R_2 + 5R_3$
 $\therefore \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = = \begin{bmatrix} \frac{4}{10} & \frac{2}{10} & \frac{2}{10} \\ \frac{-5}{10} & \frac{5}{10} \\ \frac{1}{10} & \frac{-2}{10} & \frac{3}{10} \end{bmatrix}$
i.e. $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$
Note : A^{-1} can also be found by adjoint method.

Using equation (ii) we get

$$X = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 16 + 4 \\ -20 + 10 \\ 4 + 6 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

Hence, using equality of matrices, we get x = 2, y = -1, z = 1, which is the required solution of the system of given equations.

(iii) (a) Elasticity of demand

$$\eta = \frac{-p}{x} \cdot \frac{dx}{dp}$$

For x = 200 - 4p,

$$\frac{dx}{dp} = -4$$

$$\therefore \eta = \frac{-p}{x} \cdot \frac{dx}{dp}$$

$$= \frac{-p}{(200-4p)} (-4) \qquad (For p < 50)$$

$$\therefore \eta = \frac{p}{(50-p)} \qquad (For p < 50)$$

$$\eta = \frac{10}{(50-10)}$$
$$= \frac{10}{40}$$
$$= 0.25 < 1$$

 \therefore Demand is relatively inelastic for p = 10

When p = 30

$$\eta = \frac{30}{(50-30)}$$

 $\eta = \frac{30}{20}$
= 1.5 > 1

 \therefore Demand is relatively elastic when p = 30

(c) To find the price when $\eta = 1$

As
$$\eta = 1$$
,
 $\therefore \frac{p}{50-p} = 1$
 $\therefore p = 50 - p$

∴ 2p = 50

∴ p = 25

 \therefore For elasticity η equal to 1, price is 25/ unit.

SECTION – II

ANSWER:4

(i) Given,
$$b_{yx} = -0.4$$
, $bxy = -2.025$, $r = ?$ (1/2 marks)

Correlation coefficient :

$$r = \pm \sqrt{b_{yx} \times b_{xy}}$$
(1/2 marks)

$$= \pm \sqrt{(-0.4) \times (-2.025)}$$

$$= \pm \sqrt{0.81}$$

$$r = -0.9 \qquad \because b_{yx} \& b_{xy} \text{ are negative} \qquad (1 \text{ mark})$$
(ii)
$$P(X = 1) = \frac{1}{5}$$

$$P(x = 2) = \frac{1}{5}$$

$$P(x = 3) = \frac{1}{5}$$

$$P(x = 4) = \frac{1}{5}$$

$$x = x \qquad P(x = x) \qquad x \cdot p(x)$$

$$1 \qquad \frac{1}{5} \qquad \frac{1}{5}$$

$$2 \qquad \frac{1}{5} \qquad \frac{1}{5} \qquad \frac{1}{5}$$

$$3 \qquad \frac{1}{5} \qquad \frac{1}{5} \qquad \frac{1}{5} \qquad \frac{1}{5}$$

$$4 \qquad \frac{1}{5} \qquad \frac{1}{$$

$$=\frac{10}{5}$$

$$\therefore E(X) = 2 \qquad (1/2 \text{ Mark})$$

Given, Present worth (PW) = Rs. 5,500 Sum due (SD) = Rs. 5,830 Period (n) = 9 months $= \frac{9}{12} = \frac{3}{4}$ years Now, S.D. = PW $\left(1 + \frac{n \times r}{100}\right) \rightarrow$ (1/2 mark) 5830 = 5500 $\left(1 + \frac{3/4 r}{100}\right) \rightarrow$ (1/2 mark) $\frac{5830}{5500} = 1 + \frac{3r}{400}$ $\frac{5830}{5500} = 1 + \frac{3r}{400}$ $\frac{330}{5500} = \frac{3r}{400}$ $\frac{330}{55} \times \frac{4}{3} = r$ r = 8% p.a. \rightarrow (1/2 mark)

½ mark

(iii)

Hence, rate of interest is 8% p.a.

(iv) Given,
$$\sum d^2 = 66$$

n = 10 } $\frac{1}{2}$ mark

∴ Rank Correlation :

$$R = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} \rightarrow (1/2 \text{ mark})$$

$$= 1 - \frac{6 \times 66}{10 (10^2 - 1)} \rightarrow (1/2 \text{ mark})$$

$$= 1 - \frac{6 \times 66}{10 (100 - 1)}$$

$$= 1 - \frac{6 \times 66}{10 \times 99}$$

$$= 1 - \frac{2}{5}$$

$$= \frac{3}{5}$$

$$R = 0.6 \rightarrow (1/2 \text{ mark})$$

(v) Anandi invested Rs. 10,000 for 7 months and Rutuja invested Rs. 10,000 for 12 months.

 \therefore Profit is distributed in the ratio.

13 | Page

(10,000 × 7) : (10,000 × 12)

Also, 7 + 12 = 19

Anandi's share in the profit =
$$\frac{7}{19} \times 5700$$

:. Rutuja's share in the profit =
$$\frac{12}{19} \times 5700$$

½ mark

(vi)

Age group (Years)	Population	No. of Deaths	Age – SDR (per thousand)
	nPx	nDx	$= \frac{nD_x}{nP_x} \times 1000$
Below 10	25	50	2 ($\frac{1}{2}$ mark)
10 - 30	30	90	3 $(\frac{1}{2} mark)$
30 – 45	40	160	4 (<mark>1</mark> mark)
45 – 70	20	100	5 $(\frac{1}{2} mark)$

(vii) Given, p = Rs. 10,000
r = 10% p.a.
n = 3 years

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

Using the formula (Relation between A & P)

 $A = P (1 + i)^{n} \rightarrow (1/2 \text{ mark})$ $A = 10,000 (1 + 0.1)^{3} \rightarrow (1/2 \text{ mark})$ $= 10000 (1.1)^{3}$ = 10000 (1.331) $A = \text{Rs. } 13,310 \rightarrow (1/2 \text{ mark})$

∴ Accumulated value after 3 years is Rs. 13,310

(2)

(viii) Step (1) Row minima :

Subtract the smallest element in each row from every element in that row.

	JODS		
Machines	Ι	II	III
M ₁	0	3	4
M ₂	2	0	5
M ₃	4	5	0

(1/2 mark)

Step (2) column minima

Subtract the smallest element in each column from every element in that column

	Jobs		
Machines	I	II	III
M ₁	0	3	4
M ₂	2	0	5
M ₃	4	5	0

(1/2 mark)

Step(3) Cover maximum zeros with minimum no. of straight lines.

(1/2 mark)

Since the number of straight line covering all zeros is equal to number or row, the optimum solution has reached.

Step 4 : Assignment

The optimal assignment can be made as follows :

		Jobs	
Machines	I	II	111
M ₁	0	3	4
M ₂	2	0	5
M ₃	4	5	0

(1/2 mark)

Step 5 : Allocation

Hence, the optimum assignment schedule is obtained as follows :

M_1	I	1
M_2	П	2
M_3	III	3

 \therefore Minimum value = 6 units.

ANSWER: 5 (A)

(i)

x	Y	$(x - \overline{x})$	(y - <u>y</u>)	$(\mathbf{y} - \overline{\mathbf{y}})^2$	$(x - \overline{x})$
21	19	-2	-1	1	2
25	20	2	0	0	0
26	24	3	4	16	12
24	21	1	1	1	1
19	16	-4	-4	16	16
115	100			34	31

(1/2 mark) (1/2 mark)

Step (i) $\bar{x} = \frac{\sum x}{n} = \frac{115}{5} = 23$

$$\overline{y} = \frac{\sum y}{n} = \frac{100}{5} = 20$$

Step (ii) Regression coefficient of x on y

$b_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (y - \bar{y})^2}$	ightarrow (1/2 mark)
$=\frac{31}{34}$	
= 0.91176	
~ 0.9118	ightarrow (1/2 mark)

Step (iii) Regression equation of x on y

$$(x - \bar{x}) = b_{xy} (y - \bar{y}) \rightarrow \frac{1}{2} \text{ mark}$$

 $(x - 23) = 0.9118 (y - 20)$
 $x - 23 = 0.9118y - 18.235$
 $\therefore y = 0.9118 y - 18.235 + 23$
 $y = 0.9118y + 4.764 \rightarrow \frac{1}{2} \text{ mark}$

(ii) Let the Banker's Gain be written as BG = Rs. x

Let Banker's Discount be written as BD

Given $BD = 26 \times BG$ $\rightarrow \frac{1}{2} mark$ i.e. $BD = 26 \times x$ = Rs. 26 x $\rightarrow \frac{1}{2} mark$ Now, BG = BD - TD $\rightarrow \frac{1}{2} mark$

x = 26x – TD		
TD = 26x – x		
= 25x	\rightarrow ½ mark	
But B.G. = Interest o	n TD for 1 year	
$=\frac{TD \times n \times r}{100}$	ightarrow ½ r	mark
$\mathbf{x} = \frac{25x \times 1 \times r}{100}$		
100x = 25 <i>x</i> r		
∴ r = 4%	\rightarrow ½ mark	
∴ Rate of interest is	4% p.a.	
Here, $l_{91} = 97$, $d_{91} = 3$	38 and $q_{92} = \frac{27}{59}$	
Now,	$d_{91} = l_{91} - l_{92} \longrightarrow ($	1/2 mark)
	$38 = 97 - l_{92}$	
	<i>l</i> ₉₂ = 97 – 38 = 59	ightarrow (1/2 mark)
Now,	$q_{92} = \frac{d_{92}}{l_{92}}$	ightarrow (1/2 mark)
	$\frac{27}{59} = \frac{d_{92}}{59}$	
\Rightarrow	d ₉₂ = 27	ightarrow (1/2 mark)
	$d_{92} = l_{92} - l_{93}$	ightarrow (1/2 mark)
	$27 = 59 - l_{93}$	
	$l_{93} = 59 - 27 = 32$	ightarrow (1/2 mark)
Hence,	l_{92} = 59 and l_{93} = 32	

ANSWER : 5 (B)

(iii)

(i) Consider the equation 2x + y = 4

Putting x = 0, y = 0

0+0≯ 4

Therefore, the solution set is away from the origin.

	Α	В
х	0	2
У	4	0

Consider x + y = 5

Putting x = 0, y = 0

 $0+0 \leq 5$

∴ The solution set is towards origin

	Р	Q
х	0	5
У	5	0

x = 3 is a line passing through (3, 0) and parallel to Y - axis. Solution set is towards origin.

y = 3 is a line passing through (0, 3) and parallel to X - axis. The solution set is towards origin.

The solution set is a common feasible solution BSTUVB with B(2, 0), V(3, 0).

T is a point of intersection of lines

y = 3 and x + y = 5

x = 2

Putting y = 3 in x + y = 5, we get x + 3 = 5

.:.

∴ T(2, 3)

U is a point of intersection of lines x = 3 and x + y = 5

Putting x = 3 in x + y = 5, we get y = 2.

∴ U (3, 2)

S is a point of intersection of lines y = 3 and 2x + y = 4

Putting $y = 3$ in $2x + y = 4$, we get						
	2x + 3 = 4					
	2x = 1					
.:.	$x = \frac{1}{2} = 0.5$					
	S = (0.5, 3)					
Now,	Z = 4x + 5y					
	$Z(B) = 4 \times 2 + 5 \times 0 = 8$	[•• B = (2, 0)]				
	$Z(V) = 4 \times 3 + 5 \times 0 = 12$	[` · V = (3, 0)]				
	Z (T) = 4 × 2 + 5 × 3 = 23 maximum	[` T = (2, 3)]				
	$Z(V) = 4 \times 3 + 5 \times 2 = 22$	[` V = (3, 2)]				
	$Z(S) = 4 \times 0.5 + 5 \times 3 = 17$	[` S = (0.5, 3)]				

Therefore, maximum value of Z is 23 at x = 2, y = 3.

Alternative Solutions :

Inequations	Equations	Х	Y	(x , y)	Solution set
$0 \le x \le 3$	x = 3	3	0	(3, 0)	0 < 3 (T)
					Origin side
					(LHS of line)
$0 \le y \le 3$	y = 3	0	3	(0, 3)	0 < 3 (T)
					origin side
					(Below of line)
x + y ≤ 5	x + y = 5	5	0	(5,0)	0 + 0 < 5
		0	5	(0, 5)	0 < 5 (T)
					origin side
$2x + y \ge 4$	2x + y = 4	0	4	(0, 4)	2(0) + 0 > 4
					0 > 4(F)
					Non – origin side

(4)

From graph, ABCDE be the Feasible region Here A = (0.5, 3), B (2, 3), C (3, 2) D = (3, 0) & E (2, 0)

... By corner point method

Corners	Objective function Z = 4x + 5y
A (0.5, 3)	Z = 4(0.5) + 5(3) = 2 + 15 = 17
B(2,3)	Z = 4(2) + 5(3) = 8 + 15 = 23
C(3, 2)	Z = 4(3) + 5(2) = 12 + 10 = 22
D (3, 0)	Z = 4(3) + 5(0) = 12 + 0 = 12
E (2, 0)	Z = 4(2) + 5(0) = 8 + 0 = 8

 $\therefore Z_{max} = 23 \text{ at } x = 2 \text{ \& } y = 3$

(ii) Here, Min.(A) = 5, Max. (B) = 5, Min. (C) = 1

Since, Min. (A) \geq Max. (B) is satisfied, the problem can be converted into 5 job 2 machine problem. Two fictitious machines are,

G = A + B, H = B + C.

The problem now can be written as follows :

Jobs	Machines			
	G = A + B	H = B + C		
1	6	2		
2	15	9		
3	7	4		
4	12	8		
5	9	7		

Hence, Min. $(G_{i1}, H_{i2}) = 2$, which corresponds to machine H.

Therefore, job 1 is processed in the last.

The problem now reduces to remaining four jobs.

Here, Min. $(G_{i1}, H_{i2}) = 4$, which corresponds to machine H.

Therefore, job 3 is processes in the last next to job 1.

The problem now reduces to remaining three jobs.

Here, Min. $(G_{i1}, H_{i2}) = 7$, which corresponds to machine H.

The problem now reduces to two jobs 2 and 4. Here, Min. $(G_{i1}, H_{i2}) = 8$, which corresponds to machine H. Therefore, job 4 is processed in the last next to job 5 and then job 2 is processed first.

Thus, the optimal sequence of jobs is obtained as follows :

2 4 5 3 1

Total elapsed time to complete the tasks can be computed as follows :

Job Sequence	quence Machine A		Machine B		Machine C		Idle time	
	Time in	Time out	Time in	Time out	Time in	Time out	for C	
2	0	11	11	15	15	20	15	
4	11	18	18	23	23	26	3	
5	18	24	24	27	27	31	1	
3	24	29	27	29	31	33	0	
1	29	34	34	35	35	36	2	
Idle time for machine C					21			

From the above table :

Total elapsed time T = 36 hours.

Idle time for machine A

 $= T - \begin{cases} Sum \ of \ processing \ time \\ of \ all \ jobs \ on \ machine \ A \end{cases}$

= 36 - 34

= 2 hours.

Idle time for machine B

 $= T - \begin{cases} Sum of processing time \\ of all jobs on machine B \end{cases}$ = 36 - (1 + 4 + 2 + 5 + 3)= 36 - 15= 21 hours

Idle time for machine C = 21 hours.

(iii) Step (i)
$$\bar{x} = \frac{\sum x}{n} = \frac{15}{5} = 3$$

 $\bar{y} = \frac{\sum y}{n} = \frac{30}{5} = 6$

1 mark

Step (ii)

х	у	x ²	y ²	ху
3	8	9	64	24
2	4	4	16	8
1	10	1	100	10
5	2	25	4	10
4	6	16	36	24
		55	220	76

Table 1 mark

Step (iii) Karl Pearson's correlation coefficient

$$r = \frac{n\sum xy - \sum n\sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 (\sum y)^2}}$$

= $\frac{5 \times 76 - 15 \times 30}{\sqrt{5 \times 55 - (15)^2} \sqrt{5 \times 220 - (30)^2}}$ (1 Mark)
= $\frac{380 - 450}{\sqrt{275 - 225} \sqrt{110 - 900}}$
= $\frac{-70}{\sqrt{50} \sqrt{200}}$
= $\frac{-70}{\sqrt{10000}}$
= $-\frac{70}{100}$
= -0.7 (1 mark)

ANSWER: 6 (A)

(i) Let x : no. of answers true i.e. x = 0, 1, 2,, 7 p = Probability of true answer $=\frac{1}{2}$ q = 1 - p = 1 - $\frac{1}{2} = \frac{1}{2}$ Given, n = 7 (No. of total questions) $\therefore x \sim B(n, P)$ (1/2 mark) P[x = x] = ${}^{n}C_{x} p^{x} q^{h-x}$ Now, P [X ≤ 3] = p [x = 0] + p[x = 1] + P [x = 2] + p [x = 3] \rightarrow (½ mark)

$$= {}^{7}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{7} + {}^{7}C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{6} + {}^{7}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{8} + {}^{7}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2} \rightarrow \% \text{ mark}$$

$$= \left(\frac{1}{2}\right)^{7}\left[{}^{7}C_{0} + {}^{7}C_{1} + {}^{7}C_{2} + {}^{7}C_{3}\right]$$

$$= \frac{1}{128}\left[1 + 7 + 26 + 35\right]$$

$$= \frac{69}{128} \rightarrow \% \text{ mark}$$

$$= 0.5391 \rightarrow \% \text{ mark}$$
(ii) Given, S.D. = Rs. 36,600, n = 4 months, r = 5% \rightarrow (1/2 \text{ mark})
Now,
$$B.D. = \frac{5.D \times \pi \times r}{100} = \frac{3.6600 \times 1 \times 5}{3 \times 100} \qquad (\because n = \frac{1}{3} \text{ year})$$

$$= \text{Rs. 610} \rightarrow (1/2 \text{ mark})$$
Let
$$T.D. = \text{Rs. x}$$

$$B.D. = T.D. + \text{Interest on T.D. for } \frac{1}{3} \text{ year at 5\% p.a.} (1/2 \text{ mark})$$

$$\therefore \qquad 610 = x + \left(x \times \frac{1}{3} \times \frac{5}{100}\right)$$

$$\therefore \qquad 610 = x + \frac{x}{60} = \frac{610}{61}$$

$$x = \frac{610 \times 60}{61} = \text{Rs. 600} \qquad (1/2 \text{ mark})$$
Banker's gain = Banker's discount - True discount $\rightarrow (1/2 \text{ mark})$

$$= \text{Rs. 10} \qquad (1/2 \text{ mark})$$

$$= \text{Rs. 10}$$

 $x_1\!\ge\!0\text{, }x_2\!\ge\!0$

The information given can be represented in tabular form as follows :

Section	Requirement (i	Availability (in hours)	
	Air conditioners (x ₁)	Fans (x ₂)	
Wiring	4	2	240

	Drilling	2	1	100	
	Profit Rs.	2000	1000	$Z = 2000x_1 + 1000x_2$	2
Fro	om the above ta	able, we get			
4x ₂	$_{1}$ + 2x ₂ \leq 240				
2x ₂	$_{1} + x_{2} \le 100$				
an	d objective func	ction Z = 2000x ₁ + 100	10x ₂		
Не	nce, LPP is form	nulated as follows :			
Ma	aximize Z = 2000	$0x_1 + 1000x_2$			
Su	bject to constra	lints			
4x ₂	$_{1} + 2x_{2} \leq 240$				
2x ₂	$_{1} + x_{2} \le 100$				
x ₁ 2	\geq 0, x ₂ \geq 0.				
ANSWER	₹:6(B)				
(i) We	e know that,	$CDR = \frac{\Sigma D_i}{\Sigma P_i} \times 100$	\rightarrow	→ (1/2 mark)	
	For District A :	: $\Sigma D_i = 20 + 30 + 40$ $\Sigma P_i = 1000 + 3000$) (1/2 mark)	
	∴ CDR for dist	trict A denoted by CDI	R _A is		
		$CDR_A = \frac{\Sigma D_i}{\Sigma P_i} \times 100$	$00 = \frac{90}{6,000} \times 100$	00 = 15 per thousand	
	For District B :	:			
		ΣD _i = 50 + 70 + 25	5 = 145		
		$\Sigma P_i = 2000 + 700$		000 (1/2 mark)
	∴CDR for dist	rict B denoted by CDR	₹ _B is		
		$CDR_B = \frac{\Sigma D_i}{\Sigma P_i} \times 100$	$00 = \frac{145}{10,000} \times 10^{10}$	000 = 14.5 per thousan	d
	Hence, the	e district B is more hea	althy as CDR _B <	CDR _A . (1/	/2 mark)
(ii)	In Poisson dist	ribution			(4)

 $x \sim p(m)$

	$P[x = x] = \frac{e^{-m} \cdot m^x}{x!}$		
	Given, $P(x = 1) = P(x = 2)$		
	$\frac{e^{-m} \cdot m^1}{1!} = \frac{e^{-m} \cdot m^2}{2!}$		
	$\frac{m}{1} = \frac{m^2}{2}$		
	$\frac{2}{1} = \frac{m^2}{m}$		
	m = 2		
Now,	$p(x \ge 1) = 1 - p(x < 1)$		
	= 1 - p[x = 0]		
	$=1-\frac{e^{-2}\cdot 2^{0}}{0!}$		
	$=1-\frac{0.1353\times 1}{1}$		
	= 1 – 0.1353		
	= 0.8647		
(:::)	The Value of a car $= Rc_{\rm c} 4.00,000$		
(iii)	The Value of a car = Rs. 4,00,000 The policy value of a car = Rs. 2,50,000	(0.5 M	lark)
		(0.5 10	ark)
	The rate of Premium = 5% - (20% of 5)		
	= 5% - 1%		
	= 4%	(0.5 M	lark)
Th	erefore Premium amount is = $\frac{4}{100} \times 2,50,000$		
	= Rs. 10,000/-	(0.5 M	lark)
	If the value of the car is reduced to 60% of its original value,	(0.5 1	unk)
	then the value of the car is = Rs. 4,00,000 X $\frac{60}{100}$ = Rs. 2,40,000/-	(0.5 M	lark)
	Therefore loss is = Rs. (4,00,000 – 2,40,000) = 1,60,000/-	(0.5 M	lark)
	Now, claim is = $\frac{Insured Value}{Value of car} \times loss = \frac{2,50,000}{4,00,000} \times 1,60,000 = \text{Rs. 1,00,0}$	00/- (0.	5 Mark)
	Next, Net Loss = Loss – Claim		(
	= 1,60,000 - 1,00,000 = 60,000/-		(0.5 Mark)
	Therefore Loss the owner bear (Including premium) = Net Loss + Pre = 60,000 + 10,000 = Rs. 70,000	mium	(0.5 Mark)