Jio SH14 TESTSERIES Evaluate Learn Succeed

SUGGESTED SOLUTION

SYJC

SUBJECT- MATHEMATICS \& STATISTICS

Test Code - SYJ 6122

BRANCH - () (Date:)

Head Office : Shraddha, $3^{\text {rd }}$ Floor, Near Chinai College, Andheri (E), Mumbai - 69. Tel : (022) 26836666

SECTION - I

ANSWER : 1

(i) \quad (a) $(p \wedge q) \wedge c$
(b) Dhanashree is a doctor or she is clever
(ii) $\quad|A|=\left|\begin{array}{lll}1 & 3 & 2 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right|$
$\therefore|A|=-12 \neq 0$
$\therefore A$ is nonsingular. Hence A^{-1} exists.
(iii) $y=(5 x-3)^{x}$
$\therefore \log y=\log (5 x-3)^{x}$
$\therefore \log y=x \log (5 x-3)$
$\therefore \frac{d}{d x}(\log y)=\frac{d}{d x} x \log (5 x-3)$
$\therefore \frac{1}{y} \frac{d y}{d x}=x \frac{d}{d x} \log (5 x-3)+\log (5 x-3) \frac{d(x)}{d x}$
$=\frac{x}{5 x-3} \frac{d}{d x}(5 x-3)+\log (5 x-3)$
$\therefore \frac{1}{y} \frac{d y}{d x}=\frac{5 x}{5 x-3}+\log (5 x-3)$
$\therefore \frac{d y}{d x}=y\left[\frac{5 x}{5 x-3}+\log (5 x-3)\right]$
$\therefore \frac{d y}{d x}=(5 x-3)^{x}\left[\frac{5 x}{5 x-3}+\log (5 x-3)\right]$
(iv) Put $\cos x=t \quad \therefore-\sin x d x=d t$
$\therefore \sin x d x=-d t$
$\int \frac{\sin x}{1+\cos ^{2} x} d x=\int \frac{1}{1+t^{2}}(-d t)$
$=-\int \frac{1}{1+t^{2}} d t=-\tan ^{-1} t+c$
$=-\tan ^{-1}(\cos x)+c$.
(v) $\quad g(0)=e^{\frac{5}{2}}$
(Given)
$\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}\left(1+\frac{5 x}{2}\right)^{\frac{2}{x}}$
$=\lim _{x \rightarrow 0}\left\{\left(1+\frac{5 x}{2}\right)^{\frac{2}{5 x}}\right\}^{5}$
$=\left\{\lim _{x \rightarrow 0}\left(1+\frac{5 x}{2}\right)^{\frac{2}{5 x}}\right\}^{5}$
$=e^{5}$ \qquad $\left[x \rightarrow 0, \frac{5 x}{2} \rightarrow 0\right.$ and $\left.\lim _{x \rightarrow 0}(1+\alpha)^{\frac{1}{\alpha}}=\mathrm{e}\right)$
$\therefore \lim _{x \rightarrow 0} \mathrm{~g}(\mathrm{x})=\mathrm{e}^{5}$

From (1) and (2),
$\lim _{x \rightarrow 0} \mathrm{~g}(\mathrm{x}) \neq \mathrm{g}(0)$
$\therefore \mathrm{g}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$.
(vi) Given $f(x)$ is continuous at $x=2$
$\therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\therefore \lim _{x \rightarrow 2} \frac{x^{2}+5}{x-1}=\lim _{x \rightarrow 2}(k x+1)$
$\therefore \quad \frac{4+5}{2-1}=k(2)+1$
$\therefore 9=2 k+1$
$\therefore \mathrm{k}=4$
(vii) The cost function is given as
$C=100+600 x-3 x^{2}$
$\therefore \frac{d C}{d x}=\frac{d}{d x}\left(100+600 \mathrm{x}-3 \mathrm{x}^{2}\right)$
$=0+600 \times 1-3 \times 2 x$
$=600-6 x$
If the total cost is decreasing, then $\frac{d C}{d x}<0$
$\therefore 600-6 x<0$
$\therefore 600<6 x$
$\therefore \mathrm{x}>100$

Hence, the total cost is decreasing for $\mathrm{x}>100$.
(viii) $\left[\begin{array}{cc}2 & 3 \\ 1 & -2\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
$=\left[\begin{array}{lll}2+6 & 4+9 & 6+3 \\ 1-4 & 2-6 & 3-2\end{array}\right]$
$=\left[\begin{array}{ccc}8 & 13 & 9 \\ -3 & -4 & 1\end{array}\right]$

ANSWER: 2(A)

(i)

p	q	$\sim \mathrm{q}$	$\mathrm{p} \wedge \sim \mathrm{q}$	$\mathrm{P} \rightarrow \mathrm{q}$	$(\mathrm{p} \wedge \sim \mathrm{q}) \leftrightarrow(\mathrm{p} \rightarrow \mathrm{q})$
T	T	F	F	T	F
T	F	T	T	F	F
F	T	F	F	T	F
F	F	T	F	T	F

All the entries in the last column of the above truth table are F .
$\therefore(p \wedge \sim q) \leftrightarrow(p \rightarrow q)$ is a contradiction.
(ii) $\quad x^{7} x^{9}=(x+y)^{16}$
$\therefore \log \left(x^{7} y^{9}\right)=\log (x+y)^{16}$
$\therefore \log x^{7}+\log y^{9}=\log (x+y)^{16}$
$\therefore 7 \log x+9 \log y=16 \log (x+y)$
Differentiating both sides w.r.t. x , we get,
$7 \times \frac{1}{x}+9 \times \frac{1 d y}{y d x}=16 \times \frac{1}{x+y} \cdot \frac{d}{d x}(x+y)$
$\therefore \frac{7}{x}+\frac{9}{y} \frac{d y}{d x}=\frac{16}{x+y}\left(1+\frac{d y}{d x}\right)$
$\therefore \frac{7}{x}+\frac{9}{y} \frac{d y}{d x}=\frac{16}{x+y}+\frac{16}{x+y} \cdot \frac{d y}{d x}$
$\therefore\left(\frac{9}{y}-\frac{16}{x+y}\right) \frac{d y}{d x}=\frac{16}{x+y}-\frac{7}{x}$
$\therefore\left[\frac{9 x+9 y-16 y}{y(x+y)}\right] \frac{d y}{d x}=\frac{16 x-7 x-7 y}{x(x+y)}$
$\therefore\left[\frac{9 x-7 y}{y(x+y)}\right] \frac{d y}{d x}=\frac{9 x-7 y}{x(x+y)}$
$\therefore \frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{x}$
$\therefore \frac{d y}{d x}=\frac{y}{x}$.
(iii) $\int x^{2} \cdot e^{3 x} d x$

Let $\mathrm{I}=\int x^{2} \cdot e^{3 x} d x$
$=x^{2} \cdot \int e^{3 x} d x-\int\left[\frac{d}{d x} x^{2} \int e^{3 x} d x\right] d x$
$=x^{2} \frac{e^{3 x}}{3}-\int\left[2 x \cdot \frac{e^{3 x}}{3}\right] d x$
$=\frac{1}{3} x^{2} \cdot e^{3 x}-\frac{2}{3} \int x \cdot e^{3 x} d x$
$=\frac{1}{3} x^{2} \cdot e^{3 x}-\frac{2}{3}\left\{x \cdot \int e^{3 x} d x-\int\left[\frac{d}{d x}(x) \int e^{3 x} d x\right] d x\right\}$
$=\frac{1}{3} x^{2} \cdot e^{3 x}-\frac{2}{3}\left\{x \cdot \frac{e^{3 x}}{3}-\left[\int 1 \cdot \frac{e^{3 x}}{3} d x\right]\right\}$
$=\frac{1}{3} x^{2} \cdot e^{3 x}-\frac{2}{9} x \cdot e^{3 x}+\frac{2}{9} \cdot \frac{e^{3 x}}{3}+\mathrm{c}$
$=\frac{1}{3} x^{2} \cdot e^{3 x}-\frac{2}{9} x \cdot e^{3 x}+\frac{2}{27} \cdot e^{3 x}+c$

ANSWER:2(B)

(i) Let the number of benches sold be x .

Then profit $=$ S.P. - C.P.
i.e., $\mathrm{P}(\mathrm{x})=\left(15-\frac{x}{2000}\right) x-\left(200+\frac{x}{5}\right)$
$=15 \mathrm{x}-\frac{x^{2}}{2000}-200-\frac{x}{5}$
$\therefore \mathrm{P}(\mathrm{x})=\frac{74 x}{5}-\frac{x^{2}}{2000}-200$
$\therefore \mathrm{P}^{\prime}(\mathrm{x})=\frac{d}{d x}\left(\frac{74 x}{5}-\frac{x^{2}}{2000}-200\right)$
$=\frac{74}{5} \times 1-\frac{1}{2000} \times 2 x-0$
$=\frac{74}{5}-\frac{x}{1000}$
and $\mathrm{P}^{\prime \prime}(\mathrm{x})=\frac{d}{d x}\left(\frac{74}{5}-\frac{x}{1000}\right)$

$$
=0-\frac{1}{1000} \times 1=-\frac{1}{1000}
$$

$\mathrm{P}^{\prime}(\mathrm{x})=0$ gives $\frac{74}{5}-\frac{x}{1000}=0$
$\therefore \frac{x}{1000}=\frac{74}{5}$
$\therefore \mathrm{x}=\frac{74 \times 1000}{5}=14800$
and $\mathrm{P}^{\prime \prime}(14800)=-\frac{1}{1000}<0$
$\therefore P(x)$ is maximum when $x=14800$.

Hence, the number of benches sold for maximum profit is 14800.
(ii)

By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO. Clearly for this region, the limits of integration are 0 and 2.
$\frac{y^{2}}{25}=1-\frac{x^{2}}{4}=\frac{4-x^{2}}{4}$
$\therefore \mathrm{y}^{2}=\frac{25}{4}\left(4-\mathrm{x}^{2}\right)$

In the first quadrant, $\mathrm{y}>0$
$\therefore y=\frac{5}{2} \sqrt{4-x^{2}}$
\therefore area of ellipse $=4$ (area of the region OABO)
$=4 \int_{0}^{2} y d x$
$=4 \int_{0}^{2} \frac{5}{2} \sqrt{4-x^{2}} d x$
$=10 \int_{0}^{2} \sqrt{4-x^{2}} d x$
$=10\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$
$=10\left[\left\{\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1}(1)\right\}-\left\{\frac{0}{2} \sqrt{4-0}+2 \sin ^{-1}(0)\right\}\right]$
$=10 \times 2 \times \frac{\pi}{2}=10 \pi$ sq units.
(iii) $f(x)=3 x+2,2 \leq x \leq 4$
$\therefore \mathrm{f}(2)=3(2)+2=8$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+a \mathrm{x}+b, \mathrm{x}<2$

$$
\begin{aligned}
\therefore & \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}\left(x^{2}+a x+b\right) \\
& =2^{2}+a(2)+b=4+2 a+b
\end{aligned}
$$

Since f is continuous at $\mathrm{x}=2, \lim _{x \rightarrow 2^{-}} f(x)=f(2)$
$\therefore 4+2 a+b=8$
$\therefore 2 a+b=4$
$f(4)=3(4)+2=14$
Also, $\mathrm{f}(\mathrm{x})=2 a \mathrm{x}+5 b, 4<\mathrm{x}$
$\therefore \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4}(2 a x+5 b)$
$=2 a(4)+5(b)=8 a+5 b$

Since f is continuous at $\mathrm{x}=4$,
$\lim _{x \rightarrow 4^{+}} f(x)=f(4)$
$\therefore 8 a+5 b=14$
Multiplying equation (1) by 5, we get,
$10 a+5 b=20$
Subtracting equation (2) from this equation, we get,
$2 a=6$
$\therefore a=3$
\therefore from (1), 2(3) $+b=4$
$\therefore 6+b=4 \quad \therefore b=-2$
Hence, $a=3$ and $b=-2$.

ANSWER: 3(A)

(i) $u=1+\sin \theta, v=\theta-\cos \theta$

Differentiating u and v w.r.t. θ, we get,
$\frac{d u}{d \theta}=\frac{d}{d \theta}(1+\sin \theta)=0+\cos \theta$
$=\cos \theta$
and $\frac{d v}{d \theta}=\frac{d}{d \theta}(\theta-\cos \theta)=1-(-\sin \theta)$
$=1+\sin \theta$
$\therefore \frac{d u}{d v}=\frac{(d u / d \theta)}{(d v / d \theta)}=\frac{\cos \theta}{1+\sin \theta}$
$\therefore\left(\frac{d u}{d v}\right)_{\text {at } \theta=\frac{\pi}{4}}=\frac{\cos \frac{\pi}{4}}{1+\sin \frac{\pi}{4}}$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{\sqrt{2}}\right)}{1+\frac{1}{\sqrt{2}}}=\frac{\left(\frac{1}{\sqrt{2}}\right)}{\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)} \\
& =\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\
& =\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1
\end{aligned}
$$

(ii) $\int \sqrt{x^{2}+2 x+5} d x$
$=\int \sqrt{x^{2}+2 x+1-1+5} d x$
$=\int \sqrt{(x+1)^{2}+4} d x$
$=\int \sqrt{(x+1)^{2}+2^{2}} d x$
$=\frac{1}{2}(x+1) \sqrt{(x+1)^{2}+2^{2}}+\frac{1}{2}\left(2^{2}\right) \log \left|(x+1)+\sqrt{x^{2}+2 x+5}\right|+\mathrm{c}$
$=\frac{(x+1)}{2} \sqrt{x^{2}+2 x+5}+2 \log \left|(x+1)+\sqrt{x^{2}+2 x+5}\right|+\mathrm{c}$
(iii) The negation of $(\sim p \wedge \sim q) \vee(p \wedge \sim q)$ is
$\sim[(\sim p \wedge \sim q) \vee(p \wedge \sim q)]$
$\equiv \sim(\sim p \wedge \sim q) \wedge \sim(p \wedge \sim q)$ (Negation of disjunction)
$\equiv[\sim(\sim p) \vee \sim(\sim q)] \wedge[\sim p \vee \sim(\sim q)]$
(Negation of conjunction)
$\equiv(p \vee q) \wedge(\sim p \vee q) \quad$ (Negation of negation)

ANSWER: 3(B)

(i) Let $\mathrm{I}=\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt{\tan x}}=\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt{\frac{\sin x}{\cos x}}}$
$\therefore \mathrm{I}=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$\therefore \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos \left(\frac{\pi}{2}-x\right)}}{\sqrt{\cos \left(\frac{\pi}{2}-x\right)+\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}} d x$
$=\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
$I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x+\sqrt{\cos x}}} d x$

Adding(i) \& (ii) we get,
$21=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}+\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$=[x]_{0}^{\frac{\pi}{2}}$
$=\frac{\pi}{2}-0$
$\therefore 21=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{4}$
(ii) The given equations can be considered in the matrix equation as
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
i.e.

$$
\begin{equation*}
A X=B \tag{i}
\end{equation*}
$$

Now

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]
$$

Here, $|A|=10 \neq 0 \quad \therefore A^{-1}$ exists
Pre multiplying equation (i) by A^{-1} we get
$\left(A^{-1} A\right) X=A^{-1} B$
i.e. $\quad I X=A^{-1} B$
i.e. $\quad X=A^{-1} B$

Now as A^{-1} exists, consider the equation

$$
A A^{-1}=1
$$

i.e. $\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right] A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Use $R_{2} \rightarrow R_{2}-2 R_{1}$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\therefore\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 3 & -5 \\ 0 & 2 & 0\end{array}\right] A^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

Use $R_{2} \rightarrow R_{2}-R_{3}$
$\therefore\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -5 \\ 0 & 2 & 0\end{array}\right] A^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & -1 \\ -1 & 0 & 1\end{array}\right]$

Use $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$
and $R_{3} \rightarrow R_{3}-2 R_{2}$
$\therefore\left[\begin{array}{lll}1 & 0 & -4 \\ 0 & 1 & -5 \\ 0 & 0 & 10\end{array}\right] A^{-1}=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & -2 & 3\end{array}\right]$
Use $\frac{1}{10} R_{3}$
$\therefore\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 1 & -5 \\ 0 & 0 & 1\end{array}\right] A^{-1}=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 1 & -1 \\ \frac{1}{10} & \frac{-2}{10} & \frac{3}{10}\end{array}\right]$
Use $R_{1} \rightarrow R_{1}+4 R_{3}$
$R_{2} \rightarrow R_{2}+5 R_{3}$
$\therefore\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A^{-1}==\left[\begin{array}{ccc}\frac{4}{10} & \frac{2}{10} & \frac{2}{10} \\ \frac{-5}{10} & 0 & \frac{5}{10} \\ \frac{1}{10} & \frac{-2}{10} & \frac{3}{10}\end{array}\right]$
i.e. $=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
$A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
Note : A^{-1} can also be found by adjoint method.
Using equation (ii) we get
$X=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}16+4 \\ -20+10 \\ 4+6\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
Hence, using equality of matrices, we get $x=2, y=-1, z=1$, which is the required solution of the system of given equations.
(iii) (a) Elasticity of demand

$$
\eta=\frac{-p}{x} \cdot \frac{d x}{d p}
$$

For $\quad x=200-4 p$,

$$
\frac{d x}{d p}=-4
$$

$\therefore \eta=\frac{-p}{x} \cdot \frac{d x}{d p}$

$$
=\frac{-p}{(200-4 p)}(-4)
$$

$$
\text { (For } p<50 \text {) }
$$

$\therefore \eta=\frac{p}{(50-p)}$
(For $p<50$)
(b) When $\mathrm{p}=10$
$\eta=\frac{10}{(50-10)}$
$=\frac{10}{40}$

$$
=0.25<1
$$

\therefore Demand is relatively inelastic for $\mathrm{p}=10$
When $\mathrm{p}=30$
$\eta=\frac{30}{(50-30)}$
$\eta=\frac{30}{20}$
$=1.5>1$
\therefore Demand is relatively elastic when $\mathrm{p}=30$
(c) To find the price when $\eta=1$

As $\eta=1$,
$\therefore \frac{p}{50-p}=1$
$\therefore \mathrm{p}=50-\mathrm{p}$
\therefore For elasticity η equal to 1 , price is 25 / unit.

SECTION - II

ANSWER : 4

(i) Given, $\mathrm{b}_{\mathrm{yx}}=-0.4, \mathrm{bxy}=-2.025, \mathrm{r}=$?

Correlation coefficient :

$$
\begin{array}{ll}
\mathrm{r}= \pm \sqrt{b_{y x} \times b_{x y}} \\
= \pm \sqrt{(-0.4) \times(-2.025)} \\
& \\
= \pm \sqrt{0.81} \\
\mathrm{r}=-0.9 & \because \mathrm{~b}_{\mathrm{yx}} \& \mathrm{~b}_{\mathrm{xy}} \text { are negative }
\end{array}
$$

(1 mark)
(ii) $\quad P(X=1)=\frac{1}{5}$
$\left.P(x=2)=\frac{1}{5} \quad\right\} \quad 1 / 2$ mark
$P(x=3)=\frac{1}{5}$
$P(x=4)=\frac{1}{5}$
$\left.\begin{array}{ccc}\mathrm{x}=\mathrm{x} & \mathrm{P}(\mathrm{x}=\mathrm{x}) & \mathrm{x} \cdot \mathrm{p}(\mathrm{x}) \\ 1 & \frac{1}{5} & \frac{1}{5} \\ 2 & \frac{1}{5} & \frac{2}{5} \\ 3 & \frac{1}{5} & \frac{3}{5} \\ 4 & \frac{1}{5} & \frac{4}{5} \\ & \text { Total } & \frac{10}{5}\end{array}\right\} \quad 1 / 2$ mark
\therefore Expected value: $\mathrm{E}(\mathrm{x})=\sum x \cdot p(x)$

$$
=\frac{10}{5}
$$

$\therefore \mathrm{E}(\mathrm{X})=2$
(1/2 mark)
(1/2 Mark)
(iii) Given, Present worth (PW) = Rs. 5,500

Sum due (SD) = Rs. 5,830

Period (n)

$$
=9 \text { months }
$$

$$
=\frac{9}{12}=\frac{3}{4} \text { years }
$$

Now, S.D. $=$ PW $\left(1+\frac{n \times r}{100}\right) \rightarrow \quad$ (1/2 mark)
$5830=5500\left(1+\frac{3 / 4 r}{100}\right) \rightarrow \quad(1 / 2$ mark $)$
$\frac{5830}{5500}=1+\frac{3 r}{400}$
$\frac{5830}{5500}-1=\frac{3 r}{400}$
$\frac{5830}{5500}=1+\frac{3 r}{400}$
$\frac{330}{5500}=\frac{3 r}{400}$
$\frac{330}{55} \times \frac{4}{3}=r$
$r=8 \%$ p.a. \rightarrow (1/2 mark)
Hence, rate of interest is 8% p.a.
(iv) Given, $\sum d^{2}=66$

$$
n=10
$$

$1 / 2$ mark
\therefore Rank Correlation:

$$
\begin{array}{ll}
\mathrm{R}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} & \rightarrow(1 / 2 \text { mark }) \\
=1-\frac{6 \times 66}{10\left(10^{2}-1\right)} & \rightarrow(1 / 2 \text { mark }) \\
=1-\frac{6 \times 66}{10(100-1)} & \\
=1-\frac{6 \times 66}{10 \times 99} & \\
=1-\frac{2}{5} \\
=\frac{3}{5} \\
R=0.6 \quad \rightarrow & (1 / 2 \text { mark })
\end{array}
$$

(v) Anandi invested Rs. 10,000 for 7 months and Rutuja invested Rs. 10,000 for 12 months.
\therefore Profit is distributed in the ratio.

$$
(10,000 \times 7):(10,000 \times 12)
$$

i.e., 70,000 : 1,20,000
i.e., 7 : 12

Also,

$$
7+12=19
$$

Anandi's share in the profit $=\frac{7}{19} \times 5700$
= Rs. 2,100
\therefore Rutuja's share in the profit $=\frac{12}{19} \times 5700$

$$
=\text { Rs. 3,600 }
$$

(vi)

Age group (Years)	Population	No. of Deaths	Age - SDR (per thousand)	
	$\mathbf{n P x}$	$\mathbf{n D x}$	$=\frac{{ }_{\boldsymbol{n}}^{\boldsymbol{x}}}{\boldsymbol{P}_{\boldsymbol{x}}} \times \mathbf{1 0 0 0}$	
Below 10	25	50	2	$\left(\frac{1}{2}\right.$ mark)
$10-30$	30	90	3	$\left(\frac{1}{2}\right.$ mark)
$30-45$	40	160	4	($\frac{1}{2}$ mark)
$45-70$	20	100	5	($\frac{1}{2}$ mark)

(vii) Given, $\mathrm{p}=$ Rs. 10,000

$$
\left.\begin{array}{rl}
r & =10 \% \text { p.a. } \\
\mathrm{n} & =3 \text { years } \\
\therefore \mathrm{i}=\frac{r}{100} & =\frac{10}{100}=0.1
\end{array}\right\}
$$

Using the formula (Relation between A \& P)

$$
\begin{array}{ll}
A=P(1+i)^{n} & \rightarrow(1 / 2 \text { mark }) \\
A=10,000(1+0.1)^{3} & \rightarrow(1 / 2 \text { mark }) \\
=10000(1.1)^{3} & \\
=10000(1.331) & \rightarrow(1 / 2 \text { mark })
\end{array}
$$

\therefore Accumulated value after 3 years is Rs. 13,310

Subtract the smallest element in each row from every element in that row.

	Jobs		
Machines	I	II	III
M_{1}	0	3	4
M_{2}	2	0	5
M_{3}	4	5	0

(1/2 mark)
Step (2) column minima
Subtract the smallest element in each column from every element in that column
Jobs

Machines	I	II	III
M_{1}	0	3	4
M_{2}	2	0	5
M_{3}	4	5	0

(1/2 mark)
Step(3) Cover maximum zeros with minimum no. of straight lines.

Since the number of straight line covering all zeros is equal to number or row, the optimum solution has reached.

Step 4 : Assignment
The optimal assignment can be made as follows :

Machines	I	Jobs II	III
M_{1}	0	3	4
M_{2}	2	0	5
M_{3}	4	5	0

(1/2 mark)
Step 5 : Allocation

Hence, the optimum assignment schedule is obtained as follows :

M_{1}	I	1
M_{2}	II	2
M_{3}	III	3

\therefore Minimum value $=6$ units.

ANSWER : 5 (A)

(i)

\mathbf{x}	\mathbf{Y}	$\mathbf{(x - \overline { x })}$	$(\mathbf{y}-\overline{\mathbf{y}})$	$(\mathbf{y}-\overline{\boldsymbol{y}})^{\mathbf{2}}$	$\mathbf{(x - \overline { \boldsymbol { x } })}$
21	19	-2	-1	1	2
25	20	2	0	0	0
26	24	3	4	16	12
24	21	1	1	1	1
19	16	-4	-4	16	16
$\mathbf{1 1 5}$	$\mathbf{1 0 0}$			$\mathbf{3 4}$	$\mathbf{3 1}$

(1/2 mark) (1/2 mark)
Step (i) $\bar{x}=\frac{\sum x}{n}=\frac{115}{5}=23$

$$
\bar{y}=\frac{\Sigma y}{n}=\frac{100}{5}=20
$$

Step (ii) Regression coefficient of x on y

$$
\begin{array}{ll}
\mathrm{b}_{\mathrm{xy}}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(y-\bar{y})^{2}} & \rightarrow(1 / 2 \text { mark }) \\
=\frac{31}{34} & \\
=0.91176 & \\
\sim 0.9118 & \rightarrow(1 / 2 \text { mark })
\end{array}
$$

Step (iii) Regression equation of x on y

$$
\begin{array}{ll}
(x-\bar{x})=\mathrm{b}_{\mathrm{xy}}(y-\bar{y}) & \rightarrow \frac{1}{2} \text { mark } \\
(\mathrm{x}-23)=0.9118(\mathrm{y}-20) & \\
x-23=0.9118 \mathrm{y}-18.235 & \\
\therefore \mathrm{y}=0.9118 \mathrm{y}-18.235+23 & \\
y=0.9118 \mathrm{y}+4.764 & \rightarrow \frac{1}{2} \text { mark }
\end{array}
$$

(ii) Let the Banker's Gain be written as BG = Rs. x

Let Banker's Discount be written as BD

Given $\mathrm{BD}=26 \times \mathrm{BG} \quad \rightarrow 1 / 2$ mark
i.e. $\mathrm{BD}=26 \times x$
=Rs. $26 x$
$\rightarrow 1 / 2$ mark

Now, BG = BD - TD
$\rightarrow 1 / 2$ mark

$$
x=26 x-T D
$$

$T D=26 x-x$

$$
=25 x \quad \rightarrow \frac{1}{2} \text { mark }
$$

But B.G. = Interest on TD for 1 year

$$
=\frac{T D \times n \times r}{100} \quad \rightarrow 1 / 2 \text { mark }
$$

$\mathrm{x}=\frac{25 x \times 1 \times r}{100}$
$100 x=25 x r$
$\therefore r=4 \%$ $\rightarrow 1 / 2$ mark
\therefore Rate of interest is 4% p.a.
(iii) Here, $l_{91}=97, \mathrm{~d}_{91}=38$ and $q_{92}=\frac{27}{59}$

Now,

$$
\begin{aligned}
& \mathrm{d}_{91}=l_{91}-l_{92} \rightarrow(1 / 2 \text { mark }) \\
& 38=97-l_{92}
\end{aligned}
$$

$\therefore \quad l_{92}=97-38=59 \quad \rightarrow(1 / 2$ mark $)$

Now,

$$
\mathrm{q}_{92}=\frac{d_{92}}{l_{92}}
$$

$$
\rightarrow(1 / 2 \text { mark })
$$

$$
\frac{27}{59}=\frac{d_{92}}{59}
$$

$\Rightarrow \quad \mathrm{d}_{92}=27 \quad \rightarrow(1 / 2$ mark $)$
$\therefore \quad \mathrm{d}_{92}=l_{92}-l_{93} \quad \rightarrow(1 / 2$ mark $)$
$27=59-l_{93}$
$\therefore \quad l_{93}=59-27=32 \rightarrow(1 / 2$ mark $)$

Hence,

$$
l_{92}=59 \text { and } l_{93}=32
$$

ANSWER: 5 (B)

(i) Consider the equation $2 x+y=4$

$$
\begin{aligned}
& \text { Putting } x=0, y=0 \\
& 0+0 \geq 4
\end{aligned}
$$

Therefore, the solution set is away from the origin.

	A	B
x	0	2
y	4	0

Consider $\mathrm{x}+\mathrm{y}=5$
Putting $x=0, y=0$

$$
0+0 \leq 5
$$

\therefore The solution set is towards origin

	\mathbf{P}	\mathbf{Q}
\mathbf{x}	0	5
\mathbf{y}	5	0

$x=3$ is a line passing through $(3,0)$ and parallel to Y - axis. Solution set is towards origin.
$y=3$ is a line passing through $(0,3)$ and parallel to $x-$ axis. The solution set is towards origin.

The solution set is a common feasible solution BSTUVB with $\mathrm{B}(2,0), \mathrm{V}(3,0)$.
T is a point of intersection of lines

$$
y=3 \text { and } x+y=5
$$

Putting $y=3$ in $x+y=5$, we get

$$
\begin{array}{ll}
& \mathrm{x}+3=5 \\
\therefore & \mathrm{x}=2 \\
\therefore & \mathrm{~T}(2,3)
\end{array}
$$

U is a point of intersection of lines $\mathrm{x}=3$ and $\mathrm{x}+\mathrm{y}=5$
Putting $x=3$ in $x+y=5$, we get $y=2$.
$\therefore \quad U(3,2)$
S is a point of intersection of lines $y=3$ and $2 x+y=4$

Putting $y=3$ in $2 x+y=4$, we get

$$
\begin{aligned}
& 2 x+3=4 \\
& \therefore \quad 2 x=1 \\
& \therefore \quad \mathrm{x}=\frac{1}{2}=0.5 \\
& \therefore \quad S=(0.5,3) \\
& \text { Now, } \quad Z=4 x+5 y \\
& \therefore \quad Z(B)=4 \times 2+5 \times 0=8 \quad[\because B=(2,0)] \\
& \therefore \quad \mathrm{Z}(\mathrm{~V})=4 \times 3+5 \times 0=12 \\
& \therefore \quad \mathrm{Z}(\mathrm{~T})=4 \times 2+5 \times 3=23 \text { maximum } \quad[\because \mathrm{T}=(2,3)] \\
& \therefore \quad Z(V)=4 \times 3+5 \times 2=22 \\
& {[\because v=(3,2)]} \\
& \therefore \quad Z(S)=4 \times 0.5+5 \times 3=17 \\
& {[\because S=(0.5,3)]}
\end{aligned}
$$

Therefore, maximum value of Z is 23 at $x=2, y=3$.

Alternative Solutions :

Inequations	Equations	\mathbf{X}	\mathbf{Y}	$\mathbf{(x , y)}$	Solution set
$0 \leq x \leq 3$	$x=3$	3	0	$(3,0)$	$0<3(T)$ Origin side (LHS of line)
$0 \leq y \leq 3$	$y=3$	0	3	$(0,3)$	$0<3(T)$ origin side (Below of line)
$x+y \leq 5$	$x+y=5$	5	0	$(5,0)$ $(0,5)$	$0+0<5$ $0<5(T)$ origin side
$2 x+y \geq 4$	$2 x+y=4$	0	4	$(0,4)$	$2(0)+0>4$ $0>4(F)$ Non - origin side

From graph, ABCDE be the Feasible region
Here $A=(0.5,3), B(2,3), C(3,2) D=(3,0) \& E(2,0)$
\therefore By corner point method

Corners	Objective function $Z=4 x+5 y$
$A(0.5,3)$	$Z=4(0.5)+5(3)=2+15=17$
$B(2,3)$	$Z=4(2)+5(3)=8+15=23$
$C(3,2)$	$Z=4(3)+5(2)=12+10=22$
$D(3,0)$	$Z=4(3)+5(0)=12+0=12$
$E(2,0)$	$Z=4(2)+5(0)=8+0=8$

$\therefore Z_{\text {max }}=23$ at $x=2 \& y=3$
(ii) $\quad \operatorname{Here}, \operatorname{Min} .(A)=5, \operatorname{Max} .(B)=5, \operatorname{Min} .(C)=1$

Since, Min. (A) \geq Max. (B) is satisfied, the problem can be converted into 5 job 2 machine problem. Two fictitious machines are,

$$
G=A+B, H=B+C .
$$

The problem now can be written as follows :

Jobs	Machines	
	$\mathbf{G}=\mathbf{A}+\mathbf{B}$	$\mathbf{H}=\mathbf{B}+\mathbf{C}$
1	6	2
2	15	9
3	7	4
4	12	8
5	9	7

Hence, Min. $\left(\mathrm{G}_{\mathrm{i} 1}, \mathrm{H}_{\mathrm{i} 2}\right)=2$, which corresponds to machine H .

Therefore, job 1 is processed in the last.
\square 1

The problem now reduces to remaining four jobs.

Here, Min. $\left(G_{i 1}, H_{i 2}\right)=4$, which corresponds to machine H.

Therefore, job 3 is processes in the last next to job 1.

			3	1

The problem now reduces to remaining three jobs.

Here, Min. $\left(\mathrm{G}_{\mathrm{i} 1}, \mathrm{H}_{\mathrm{i} 2}\right)=7$, which corresponds to machine H.
\square
The problem now reduces to two jobs 2 and 4.
Here, Min. $\left(G_{i 1}, H_{i 2}\right)=8$, which corresponds to machine H.

Therefore, job 4 is processed in the last next to job 5 and then job 2 is processed first.
Thus, the optimal sequence of jobs is obtained as follows:

2	4	5	3	1

Total elapsed time to complete the tasks can be computed as follows :

Job Sequence	Machine A		Machine B		Machine C		Idle time for C
	Time in	Time out	Time in	Time out	Time in	Time out	15
2	0	11	11	15	15	20	3
4	11	18	18	23	23	26	3
5	18	24	24	27	27	31	1
3	24	29	27	29	31	33	0
1	29	34	34	35	35	36	2
Idle time for machine C							21

From the above table :

Total elapsed time T = 36 hours.
Idle time for machine A
$=\mathrm{T}-\left\{\begin{array}{l}\text { Sum of procesing time } \\ \text { of all jobs on machine } A\end{array}\right\}$
$=36-34$
$=2$ hours.

Idle time for machine B
$=\mathrm{T}-\left\{\begin{array}{l}\text { Sum of procesing time } \\ \text { of all jobs on machine } B\end{array}\right\}$
$=36-(1+4+2+5+3)$
$=36-15$
$=21$ hours

Idle time for machine $\mathrm{C}=21$ hours.
(iii) Step (i) $\bar{x}=\frac{\sum x}{n}=\frac{15}{5}=3$

$$
\left.\bar{y}=\frac{\Sigma y}{n}=\frac{30}{5}=6\right\}
$$

$\left.\begin{array}{|c|c|c|c|c|}\hline \mathbf{x} & \mathbf{y} & \mathbf{x}^{\mathbf{2}} & \mathbf{y}^{\mathbf{2}} & \mathbf{x y} \\ \hline 3 & 8 & 9 & 64 & 24 \\ \hline 2 & 4 & 4 & 16 & 8 \\ \hline 1 & 10 & 1 & 100 & 10 \\ \hline 5 & 2 & 25 & 4 & 10 \\ \hline 4 & 6 & 16 & 36 & \mathbf{2 4} \\ \hline & & \mathbf{5 5} & \mathbf{2 2 0} & \mathbf{7 6} \\ \hline\end{array}\right\}$

Table 1 mark

Step (iii) Karl Pearson's correlation coefficient

$$
\begin{aligned}
& \left.r=\frac{n \sum x y-\sum n \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}\left(\sum y\right)^{2}}}\right\} \\
& =\frac{5 \times 76-15 \times 30}{\sqrt{5 \times 55-(15)^{2}} \sqrt{5 \times 220-(30)^{2}}} \\
& =\frac{380-450}{\sqrt{275-225} \sqrt{110-900}} \\
& =\frac{-70}{\sqrt{50} \sqrt{200}} \\
& =\frac{-70}{\sqrt{10000}} \\
& =\frac{-70}{100} \\
& =-0.7
\end{aligned}
$$

ANSWER : 6 (A)

(i) Let x : no. of answers true
i.e. $x=0,1,2, \ldots . . ., 7$
$1 / 2$ mark
$p=$ Probability of true answer
$=\frac{1}{2}$
$q=1-p=1-\frac{1}{2}=\frac{1}{2}$
Given, $\mathrm{n}=7$ (No. of total questions)
$\therefore \mathrm{x} \sim \mathrm{B}(\mathrm{n}, \mathrm{P})$
(1/2 mark)
$P[x=x]={ }^{n} C_{x} p^{x} q^{h-x}$
Now, $P[X \leq 3]=p[x=0]+p[x=1]+P[x=2]+p[x=3] \quad \rightarrow(1 / 2$ mark $)$

$$
\begin{array}{ll}
={ }^{7} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{7}+{ }^{7} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{6}+{ }^{7} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{5}+{ }^{7} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2} & \rightarrow 1 / 2 \text { mark } \\
=\left(\frac{1}{2}\right)^{7}\left[{ }^{7} C_{0}+{ }^{7} C_{1}+{ }^{7} C_{2}+{ }^{7} C_{3}\right] & \\
=\frac{1}{128}[1+7+26+35] & \rightarrow 1 / 2 \text { mark } \\
=\frac{69}{128} & \rightarrow 1 / 2 \text { mark }
\end{array}
$$

(ii) Given, S.D. $=$ Rs. $36,600, n=4$ months, $r=5 \% \quad \rightarrow(1 / 2$ mark $)$

$$
\begin{aligned}
& \text { Now, } \\
& \text { B.D. }=\frac{\text { S.D. } \times n \times r}{100}=\frac{36,600 \times 1 \times 5}{3 \times 100} \\
& \text { = Rs. } 610 \\
& \text { Let } \\
& \text { T.D. }=\text { Rs. } x \\
& \text { B. D. = T.D. }+ \text { Interest on T.D. for } \frac{1}{3} \text { year at } 5 \% \text { p.a } \\
& \therefore \quad 610=x+\left(x \times \frac{1}{3} \times \frac{5}{100}\right) \\
& \therefore \quad 610=\mathrm{x}+\frac{x}{60}=\frac{61 x}{60} \\
& x=\frac{610 \times 60}{61}=\text { Rs. } 600 \\
& \text { (1/2 mark) } \\
& \text { Banker's gain }=\text { Banker's discount }- \text { True discount } \\
& =\text { Rs. (610-600) } \\
& \text { = Rs. } 10 \\
& \text { Banker's gain = Rs. } 10 \\
& \rightarrow \text { (1/2 mark) }
\end{aligned}
$$

(iii) Let $\mathrm{x}_{1}=$ Number of air conditioners
$x_{2}=$ Number of fans
Since, the number of products cannot be negative.
$x_{1} \geq 0, x_{2} \geq 0$
The information given can be represented in tabular form as follows :

Section	Requirement (in hour)		Availability (in hours)
	Air conditioners (\mathbf{x}_{1})	Fans ($\mathbf{x}_{\mathbf{2}}$)	
Wiring	4	2	240

Drilling	2	1	100
Profit Rs.	2000	1000	$Z=2000 x_{1}+1000 x_{2}$

From the above table, we get
$4 x_{1}+2 x_{2} \leq 240$
$2 x_{1}+x_{2} \leq 100$
and objective function $Z=2000 x_{1}+1000 x_{2}$

Hence, LPP is formulated as follows :

Maximize $Z=2000 x_{1}+1000 x_{2}$

Subject to constraints
$4 x_{1}+2 x_{2} \leq 240$
$2 x_{1}+x_{2} \leq 100$
$x_{1} \geq 0, x_{2} \geq 0$.

ANSWER : 6 (B)

(i) We know that,

$$
\mathrm{CDR}=\frac{\Sigma D_{i}}{\Sigma P_{i}} \times 100
$$

$$
\rightarrow(1 / 2 \text { mark })
$$

For District A :

$$
\left.\begin{array}{l}
\Sigma \mathrm{D}_{\mathrm{i}}=20+30+40=90 \\
\Sigma \mathrm{P}_{\mathrm{i}}=1000+3000+2000=6000
\end{array}\right\} \quad(1 / 2 \text { mark })
$$

\therefore CDR for district A denoted by $\mathrm{CDR}_{\mathrm{A}}$ is

$$
\mathrm{CDR}_{\mathrm{A}}=\frac{\Sigma D_{i}}{\Sigma P_{i}} \times 1000=\frac{90}{6,000} \times 1000=15 \text { per thousand }
$$

For District B :

$$
\begin{aligned}
& \Sigma D_{i}=50+70+25=145 \\
& \Sigma P_{i}=2000+7000+1000=10,000
\end{aligned}
$$

\therefore CDR for district B denoted by $\mathrm{CDR}_{\mathrm{B}}$ is

$$
\mathrm{CDR}_{\mathrm{B}}=\frac{\Sigma D_{i}}{\Sigma P_{i}} \times 1000=\frac{145}{10,000} \times 1000=14.5 \text { per thousand }
$$

Hence, the district B is more healthy as $C D R_{B}<C D R_{A}$.
(1/2 mark)
(ii) In Poisson distribution
$x \sim p(m)$

$$
\mathrm{P}[\mathrm{x}=\mathrm{x}]=\frac{e^{-m} \cdot \mathrm{~m}^{x}}{x!}
$$

Given, $P(x=1)=P(x=2)$
$\frac{e^{-m} \cdot m^{1}}{1!}=\frac{e^{-m} \cdot m^{2}}{2!}$
$\frac{m}{1}=\frac{m^{2}}{2}$
$\frac{2}{1}=\frac{m^{2}}{m}$
$m=2$
Now, $p(x \geq 1)=1-p(x<1)$

$$
\begin{aligned}
& =1-\mathrm{p}[\mathrm{x}=0] \\
& =1-\frac{e^{-2 \cdot 2^{0}}}{0!} \\
& =1-\frac{0.1353 \times 1}{1} \\
& =1-0.1353 \\
& =0.8647
\end{aligned}
$$

(iii) The Value of a car = Rs. 4,00,000

The policy value of a car = Rs. 2,50,000
(0.5 Mark)

The rate of Premium $=5 \%-(20 \%$ of 5$)$

$$
\begin{align*}
& =5 \%-1 \% \\
& =4 \% \tag{0.5Mark}
\end{align*}
$$

Therefore Premium amount is $=\frac{4}{100} \times 2,50,000$
= Rs. 10,000/-

If the value of the car is reduced to 60% of its original value,
then the value of the car is $=$ Rs. $4,00,000 \times \frac{60}{100}=$ Rs. $2,40,000 /-$

Therefore loss is = Rs. $(4,00,000-2,40,000)=1,60,000 /-$

Now, claim is $=\frac{\text { Insured Value }}{\text { Value of car }} \times$ loss $=\frac{2,50,000}{4,00,000} \times 1,60,000=$ Rs. $1,00,000 /-(0.5$ Mark $)$

Next, Net Loss = Loss - Claim

$$
\begin{equation*}
=1,60,000-1,00,000=60,000 /- \tag{0.5Mark}
\end{equation*}
$$

Therefore Loss the owner bear (Including premium) = Net Loss + Premium
= 60,000 + 10,000 = Rs. 70,000

