Jio
 TESTSERIES
 Evaluate Learn Succeed

SUGGESTED SOLUTION

SYJC
SUBJECT- MATHEMATICS \& STATISTICS
Test Code - SYJ 6118 BRANCH - () (Date:)

Ans. : 1
1.

Inequation	Equation	Double Intercept form	Points (x, y)	Region
$8 x+5 y \leq 60$	$8 x+5 y=60$	$\frac{x}{7.5}+\frac{y}{12}=1$	$\begin{gathered} A(7.5,0) \\ B(0,12) \end{gathered}$	$\begin{gathered} 8(0)+5(0)=0<60 \\ \therefore \text { Origin side } \end{gathered}$
$4 x+5 y \leq 40$	$4 x+5 y=40$	$\frac{x}{10}+\frac{y}{8}=1$	$\begin{aligned} & C(10,0) \\ & D(0,8) \end{aligned}$	$\begin{gathered} 4(0)+5(0)=0<40 \\ \therefore \text { Origin side } \\ \hline \end{gathered}$
$x \geq 0$	$x=0$	-	-	RHS of y - axis
$y \geq 0$	$y=0$	-	-	Above x - axis

The shaded portion OAED represents the common region.
2. Given: $e_{3}^{o}=1.7, l_{3}=75$

We know that,
$e_{x}^{o}=\frac{T_{x}}{l_{x}}$
$\therefore e_{3}^{o}=\frac{T_{3}}{l_{3}}$
$\therefore 1.7=\frac{T_{3}}{75} \quad \therefore 75 \times 1.7=\mathrm{T}_{3}$
$\therefore \mathrm{T}_{3}=127.5$.
3. $x-y=1, x=3$

$$
\begin{aligned}
& \frac{x}{1}+\frac{y}{(-1)}=1 \\
& \text { Let } \mathrm{Z}_{1}=2 \quad \therefore 2 \mathrm{x}-\mathrm{y}=2 \\
& \mathrm{Z}_{2}=4 \quad \therefore 2 \mathrm{x}-\mathrm{y}=4
\end{aligned}
$$

In this LPP, though feasible region is unbounded, we get unique optimum solution.
$x=3, y=2, z=4$

(02)
4. We present the computation in the following table.

Age group	Population	No. of Deaths	Age - SDR per thousand
(years)	${ }_{n} \mathbf{P}_{\mathbf{x}}$	${ }_{n} \mathbf{D}_{\boldsymbol{x}}$	${ }_{{ }^{\boldsymbol{n}}}^{\boldsymbol{D}_{\boldsymbol{x}}} \times \mathbf{1 0 0 0}$
$0-15$	12,000	290	24.16
$15-35$	30,000	410	13.66
$35-70$	45,000	495	11.00
70 and above	4,000	168	42.00

5. $5(x-7)>-10 \Rightarrow 5 x-35>-10$

$$
\begin{aligned}
& \Rightarrow 5 x>-10+35 \\
& \Rightarrow 5 x>25 \\
& \Rightarrow x>5
\end{aligned}
$$

\therefore solution interval : $(5, \infty)$
Solution graph : As shown in the figure

6. Given : Total number of deaths $\Sigma D_{i}=900$
$\Sigma \mathrm{P}_{\mathrm{i}}=9000+25000+32,000+9000$
$=75,000$
Now, CDR $=\frac{\sum D_{i}}{\sum P_{i}} \times 1000$
$=\frac{900}{75000} \times 1000$
$=\frac{900}{75}$
$\therefore \mathrm{CDR}=12$

Hence, CDR = 12 per thousand.

Ans.: 2

1. Let x_{1} : number of units of Food F_{1} and x_{2} : number of units of Food F_{2}

Table

Product	Food	Food	Minimum
	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$	Requirement
Vitamins	200	100	4000
Minerals	1	2	50
Calories	40	30	1500
Cost /unit	Rs. 50	Rs. 75	

Sick person's problem is to determine x_{1} and x_{2} so as to minimize the total cost

$$
Z=50 x_{1}+75 x_{2}
$$

Subject to constraints

$$
\begin{align*}
& 200 x_{1}+100 x_{2} \geq 4000 \\
& x_{1}+2 x_{2} \geq 50 \\
& 40 x_{1}+30 x_{2} \geq 1500 \\
& x_{1} \geq 0, x_{2} \geq 0 \tag{03}
\end{align*}
$$

2. Given : $l_{4}=60, \mathrm{~L}_{4}=45, p_{4}=$?

We have, $\mathrm{L}_{\mathrm{x}}=\frac{l_{x}+l_{x+1}}{2}$
$\therefore \mathrm{L}_{4}=\frac{l_{4}+l_{5}}{2}$
$\therefore 45=\frac{60+l_{5}}{2}$
$\therefore 2 \times 45-60=l_{5}$
$\therefore l_{5}=90-60$
$\therefore l_{5}=30$
We have, $d_{\mathrm{x}}=l_{\mathrm{x}}-l_{\mathrm{x}+1}$
$\therefore d_{4}=l_{4}-l_{5}$
$\therefore \mathrm{d}_{4}=60-30=30$

We have, $p_{\mathrm{x}}=1-\mathrm{q}_{\mathrm{x}}$
$\therefore \mathrm{p}_{4}=1-\mathrm{q}_{4}$

$$
\begin{aligned}
& =1-\frac{d_{4}}{l_{4}} \\
& =1-\frac{30}{60} \\
& =1-0.5 \\
& =0 . . .\left(\because q_{x}=\frac{d_{x}}{l_{x}}\right)
\end{aligned}
$$

Hence, $p_{4}=0.5$.
3. Consider the equation $\mathrm{x}+2 \mathrm{y}=6$.

To draw the graph of this equation, we find two points as follows :

Points	\mathbf{x}	\mathbf{y}
A	0	3
B	6	0

Two points are $A(0,3)$ and $B(6,0)$. Draw the graph of this line $A B$. Choose a point $(1,1)$. The coordinate of this point satisfy the given inequations. Therefore, shade the half plane containing this point. The shaded portion as shown in the figure represents the solution graph of the given inequation.

4. Given : $l_{0}=1,000, l_{1}=880, l_{2}=876, \mathrm{~T}_{2}=3323$

We have, $\mathrm{L}_{\mathrm{x}}=\frac{l_{x}+l_{x+1}}{2}$
$\therefore \mathrm{L}_{0}=\frac{l_{0}+l_{1}}{2}=\frac{1000+880}{2}=\frac{1880}{2}=940$

$$
\mathrm{L}_{1}=\frac{l_{1}+l_{2}}{2}=\frac{880+876}{2}=\frac{1756}{2}=878
$$

We have, $\mathrm{T}_{\mathrm{x}}=\mathrm{L}_{\mathrm{x}}+\mathrm{T}_{\mathrm{x}+1}$

$$
\begin{aligned}
\therefore \mathrm{T}_{1}= & \mathrm{L}_{1}+\mathrm{T}_{2} \\
& =878+3323 \\
& =4201
\end{aligned}
$$

Now, $\mathrm{T}_{0}=\mathrm{L}_{0}+\mathrm{T}_{1}$

$$
=940+4201
$$

$$
=5141
$$

Now, we calculate $e_{0}^{o}, e_{1}^{o}, e_{2}^{o}$:
We have, $e_{x}^{o}=\frac{T_{x}}{l_{x}}$
$\therefore e_{0}^{o}=\frac{T_{0}}{l_{0}}=\frac{5141}{1000}=5.141$
$e_{1}^{o}=\frac{T_{1}}{l_{1}}=\frac{4201}{880}=4.7738$
$e_{2}^{o}=\frac{T_{2}}{l_{2}}=\frac{3323}{876}=3.7933$.

Ans.: 3

1. Given: $Z=3 x_{1}+x_{2}$
$5 x_{1}+9 x_{2} \leq 45, x_{1}+x_{2} \geq 2, x_{2} \leq 4 x_{1}, x_{2}=0$
Now, $5 x_{1}+9 x_{2}=45$
\therefore two points are $(9,0)(0,5)$
$x_{1}+x_{2}=2$
\therefore two points are $(2,0),(0,2)$
$\mathrm{x}_{2}=4$
\therefore point is $(0,4)$.
In graph $A B C D E$ is feasible region. It is a convex polygon whose vertices are $A(2,0), B(0,2), C(0,4)$, $D(1.8,4), E(9,0)$. At at least one of the vertices the value of objective function Z will be minimum.

At $A(2,0), Z=3(2)+0=6+0=6$
$B(0,2), Z=3(0)+2=0+2=2$
$C(0,4), Z=3(0)+4=0+4=4$
$D(1.8,4), Z=3(1.8)+4=5.4+4=9.4$
$E(9,0) Z=3(9)+0=27+0=27$
\therefore at $\mathrm{B}(0,2)$ the value of Z is minimum.

Hence, optimum solution is,
$x_{1}=0, x_{2}=2$ and $Z_{\text {min }}=2$.

(04)
2. The calculations are done as follows :

We use,

$$
\mathrm{d}_{\mathrm{x}}=l_{\mathrm{x}}-l_{\mathrm{x}+1}
$$

Thus

$$
\mathrm{d}_{0}=l_{0}-l_{1}
$$

$$
=1000-940=60 \text { etc. }
$$

Use : $\mathrm{q}_{\mathrm{x}}=\frac{d_{x}}{l_{x}}$
Thus $\mathrm{q}_{0}=\frac{d_{0}}{l_{o}}$

$$
\begin{aligned}
& =\frac{60}{1000} \\
& =0.06, \text { etc. }
\end{aligned}
$$

Use $\mathrm{L}_{\mathrm{x}}=\frac{l_{x}+l_{x+1}}{2}$
Thus, $\mathrm{L}_{0}=\frac{l_{0}+l_{1}}{2}$
$=\frac{1000+940}{2}=970$, etc.

The complete life table for the parrots is given below :

Age x	l_{x}	$\mathrm{d}_{\mathrm{x}}=l_{\mathrm{x}}-l_{\mathrm{x}}$ +1	$\mathrm{q}_{\mathrm{x}}=\frac{d_{x}}{l_{x}}$	$\mathrm{p}_{\mathrm{x}}=1-q_{\mathrm{x}}$	$\mathrm{L}_{\mathrm{x}}=\frac{l_{x}+l_{x+1}}{2}$	$\mathrm{~T}_{\mathrm{x}}$	$e_{x}^{0}=\frac{T_{x}}{l_{x}}$
0	1000	60	0.0600	0.94	970.0	2835.	2.8350
1	940	160	0.1702	0.8298	860.0	1865.0	1.9840
2	780	190	0.2435	0.7565	685.0	1005.0	1.2885
3	590	565	0.9576	0.0424	307.5	320.0	0.5424
4	25	25	1.0000	0	12.5	12.5	0.5000
5	0	-	-	-	-	-	-

3. Let $\mathrm{x}=$ Number of units of chemical A.
$y=$ Number of units of chemical B.
Since, the number of units cannot be negative, $x \geq 0, y \geq 0$.
From the given data, we get the following inequations :
$x+2 y \geq 80$
$3 x+y \geq 75$
Let $\mathrm{Z}=$ Total Cost
The cost of one unit of chemical A is Rs. 4 and that of chemical B is Rs. 6.
\therefore the objective function to be minimized is $\mathrm{Z}=4 \mathrm{x}+6 \mathrm{y}$
Thus, the LPP is formulated as follows :
Minimize $Z=4 x+6 y$

$$
\text { Subject to } x+2 y \geq 80,3 x+y \geq 75, x \geq 0, y \geq 0 \text {. }
$$

To draw the graph, we prepare the following table :

Inequation	Equation	Points (x, y)				Region
$x+2 y \geq 80$	$x+2 y=80$	x		80	A(0, 40)	$0+2(0) \ngtr 80$
		y	40	0	B $(80,0)$	\therefore Non origin side of the line $A B$
$3 x+y \geq 75$	$3 x+y=75$	\bar{x}y	0	25	C(0, 75)	$3(0)+0 \ngtr 75$
			75	0	D (25,0)	\therefore Non - origin side of the line CD
$0 \geq, y \geq 0$	$x=0, y=0$			-		First quadrant

From the graph the unbounded feasible region is CEB. The lower vertices of this region are $C(0,75)$, E $(14,33), B(80,0)$.

At any one of these vertices, the value of Z is minimum.
$Z=4 x+6 y$
\therefore at $\mathrm{C}(0,75), \mathrm{Z}=4(0)+6(75)=450$
$E(14,33), Z=4(14)+6(33)=56+198=254$
$B(80,0), Z=4(80)+6(0)=320$
The value of Z is minimum at the point $E(14,33)$.
\therefore the solution of the given LPP is $x=14, y=33, Z_{\text {min }}=254$.
Hence, 14 units of chemical A and 33 units of chemical B should be produced so as the cost is minimum.
4. Given : $l_{80}=717, \mathrm{~d}_{80}=214, \mathrm{q}_{81}=0.3364, \mathrm{p}_{82}=0.62006$,
$l_{81}=? l_{82}=$?,$l_{83}=$?
We have, $\mathrm{d}_{\mathrm{x}}=l_{x}-l_{\mathrm{x}+1}$
$\therefore \mathrm{d}_{80}=l_{80}-l_{81}$
$\therefore \quad 214=717-l_{81}$
$\therefore \quad l_{81}=717-214$
$\therefore \quad l_{81}=503$
We have, $\mathrm{q}_{\mathrm{x}}=\frac{d_{x}}{l_{x}}$
$\therefore \mathrm{q}_{81}=\frac{d_{81}}{l_{81}}$
$\therefore 0.3364=\frac{d_{81}}{503}$
$\therefore \mathrm{d}_{81}=503 \times 0.3364$

We have, $\mathrm{d}_{\mathrm{x}}=l_{x}-l_{\mathrm{x}+1}$

$$
\begin{aligned}
& \therefore \mathrm{d}_{81}=l_{81}-l_{82} \\
& \therefore 169=503-l_{82} \\
& \therefore l_{82}=503-169 \\
& \therefore l_{82}=334
\end{aligned}
$$

We have, $p_{\mathrm{x}}=\frac{l_{x+1}}{l_{x}}$

$$
\begin{aligned}
& \therefore p_{82}=\frac{l_{83}}{l_{82}} \\
& \therefore 0.62006=\frac{l_{83}}{334} \\
& \therefore l_{83}=334 \times 0.62006 \\
& \therefore l_{83}=207.1 \approx 207
\end{aligned}
$$

Hence, $l_{81}=503, l_{82}=334$ and $l_{83}=207$.

