J.K. SHAH CLASSES

MATHEMATICS \& STATISTICS

SYJC PRELIUM - 02
SECTION - I
Q1. Attempt ANY SIX of the following

1. Find X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right] ; \quad X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

SOLUTION

$$
\begin{array}{rlrl}
X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) & X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) \\
X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) & X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
2 X=\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & 2 Y=\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right) \\
X=\frac{1}{2}\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & Y=\frac{1}{2}\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right) \\
X & =\left(\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right) & Y & =\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
\end{array}
$$

2. Find $d y / d x$ if $y=\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$

SOLUTION
$y=\cos ^{-1} 2 x \sqrt{1-x^{2}} \quad$ Put $x=\sin \theta$
$y=\cos ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$y=\cos ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)$
$y=\cos ^{-1}(2 \sin \theta \cos \theta)$
$y=\cos ^{-1}(\sin 2 \theta)$
$y=\cos ^{-1} \cos (\pi / 2-2 \theta)$
$y=\pi / 2-2 \theta$
$y=\pi / 2-2 \sin ^{-1} x$
$\frac{d y}{d x}=-\frac{2}{\sqrt{1-x^{2}}}$
04. Find $d y / d x$ if $x=\sin ^{3} \theta \quad, y=\cos ^{3} \theta$

SOLUTION
$x=\sin ^{3} \theta$

$$
=3 \sin ^{2} \theta \cdot \cos \theta
$$

$$
\begin{aligned}
& \begin{array}{l|l}
y=\cos ^{3} \theta \\
\frac{d y}{d \theta}=3 \cos ^{2} \theta \frac{d}{d \theta} \cos \theta & \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
\end{array} \\
& =\frac{-3 \cos ^{2} \theta \cdot \sin \theta}{3 \sin ^{2} \theta \cdot \cos \theta} \\
& =-3 \cos ^{2} \theta \cdot \sin \theta \\
& =-\cot \theta
\end{aligned}
$$

4. Write negations of the following statements
5. $\forall y \in N, y^{2}+3 \leq 7$

Negation : $\exists y \in N$, such that $y^{2}+3>7$
2. if the lines are parallel then their slopes are equal

Using $\quad: \quad \sim(P \rightarrow Q) \equiv P \wedge \sim Q$
Negation : lines are parallel and their slopes are not equal
05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75 SOLUTION

$$
\begin{aligned}
\operatorname{Rm} & =\operatorname{RA}\left(1-\frac{1}{\eta}\right) \\
50 & =75\left(1-\frac{1}{\eta}\right) \\
\frac{50}{75} & =1-\frac{1}{\eta} \\
\frac{2}{3} & =1-\frac{1}{\eta} \\
\frac{1}{\eta} & =1-\frac{2}{3} \\
\frac{1}{\eta} & =\frac{1}{3}
\end{aligned}
$$

6. State which of the following sentences are statements. In case of statement, write down the truth value
a) Every quadratic equation has only real roots
ans : the given sentence is a logical statement. Truth value : F
b) $\sqrt{ }-4$ is a rational number
ans : the given sentence is a logical statement. Truth value : F
7. Evaluate: $\int \frac{\sec ^{2} x}{\tan ^{2} x+4} d x$

SOLUTION

PUT $\tan x=t$

$$
\sec ^{2} x \cdot d x=d t
$$

the sum is
$=\int \frac{1}{t^{2}+4} d t$
$=\int \frac{1}{t^{2}+2^{2}}$.
$=\frac{1}{a} \tan ^{-1} \frac{t}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{t}{2}+c$
Resubs.
$=\frac{1}{2} \tan ^{-1}\left(\frac{\tan x}{2}\right)+c$
08. if $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) ; \quad B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ then find $|A B|$

SOLUTION

$$
\begin{aligned}
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
& =\left(\begin{array}{ll}
1+3 & 2+4 \\
2+6 & 4+8
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 & 6 \\
8 & 12
\end{array}\right) \\
& |A B|=4(12)-8(6)=48-48=0
\end{aligned}
$$

1. if the function given below is continuous at $x=2$ and $x=4$ then find $a \& b$

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{x}^{2}+\mathrm{ax}+\mathrm{b} \\
& =3 \mathrm{f}+\mathrm{x}<2 \\
& =2 \mathrm{ax}+5 \mathrm{~b}
\end{aligned} \quad \begin{array}{ll}
; & 2 \leq x \leq 4 \\
&
\end{array}
$$

SOLUTION

PART - 1
STEP 1
$\operatorname{Lim} f(x)$
$x \rightarrow 2-$
$=\operatorname{Lim}_{x \rightarrow 2} x^{2}+a x+b$
$=\quad 2^{2}+a(2)+b$
$=\quad 4+2 a+b$

STEP 2

$$
\operatorname{Lim} f(x)
$$

$$
x \rightarrow 2+
$$

$=\operatorname{Lim}_{x \rightarrow 2} 3 x+2$
$=3(2)+2=8$

STEP 3

$f(2)=3(2)+2=8$

STEP 4

Since the f is continuous at $x=2$

$\operatorname{Lim}_{x \rightarrow 2-} f(x)$	$=\operatorname{Lim}_{x \rightarrow 2+} f(x)=f(2)$
$4+2 a+b$	$=8 \quad=8$
$2 a+b$	$=4 \ldots \ldots \ldots \ldots \ldots(1)$

PART - 2

STEP 1

$\operatorname{Lim}_{x \rightarrow 4-} f(x)$
$=\operatorname{Lim}_{x \rightarrow 4} 3 x+2$
$=3(4)+2=14$

STEP 2

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 4+} f(x) \\
= & \operatorname{Lim}_{x \rightarrow 4} 2 a x+5 b \\
= & 2 a(4)+5 b \\
= & 8 a+5 b
\end{aligned}
$$

STEP 3

$f(4)=3(4)+2=14$

STEP 4

Since the f is continuous at $\mathrm{x}=4$

$$
\begin{align*}
\operatorname{Lim}_{x \rightarrow 4-} f(x) & =\operatorname{Lim}_{x \rightarrow 4+} f(x)=f(4) \\
14 & =8 a+5 b=14 \\
8 a+5 b & =14 \quad \ldots \ldots \ldots \ldots \ldots . .
\end{align*}
$$

Solving (1) and (2) : a = 3, b=-2
02.

Using rules of negations, write the negation of the following
a) $p \wedge(q \rightarrow r)$
b) $\sim p \vee \sim q$
a) $\sim(p \wedge(q \rightarrow r))$
~ $p \vee \sim(q \rightarrow r)$.... De Morgan's Law
$\sim p \vee(q \wedge \sim r) \quad \ldots \sim(P \rightarrow Q) \equiv P \wedge \sim Q$
b) $\sim \sim p \vee \sim q$
$\sim(\sim \mathrm{p}) \wedge \sim(\sim q) \quad$.... De Morgan's Law
p ^ q
03.
a manufacturing company produces x items at the total cost of $(180+4 x)$. The demand function is $\mathrm{p}=240-\mathrm{x}$. Find x for which the profit is increasing

SOLUTION
$\mathrm{R}=\mathrm{px}$
$=240 x-x^{2}$
$C=180+4 x$

$$
\begin{aligned}
\pi & =R-C \\
& =240 x-x^{2}-180-4 x \\
& =236 x-x^{2}-180
\end{aligned}
$$

For Profit increasing

```
\(\frac{d \pi}{d x}>0\)
\(236-2 x>0\)
    \(236>2 x\)
    \(118>x\)
        \(x<118\)
```


(B) Attempt ANY TWO of the following

Q1. Find the volume of the solid obtained by the complete revolution of the ellipse

$$
\frac{x^{2}}{36}+\frac{y^{2}}{25}=1 \text { about } y \text { - axis }
$$

SOLUTION

STEP 1 :

$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$a^{2}=36 ; a=6$
$b^{2}=25, b=5$

$=\frac{36 \pi}{25}\left(25 y \frac{-y^{3}}{3}\right)$
STEP $2:$
$=\frac{36 \pi}{25}\left\{\left(125-\frac{125}{3}\right)-\left(-125+\frac{125}{3}\right)\right\}$

$$
\frac{x^{2}}{36}=1-\frac{y^{2}}{25}
$$

$$
\frac{x^{2}}{36}=\frac{25-y^{2}}{25}
$$

$$
x^{2}=\frac{36}{25}\left(25-y^{2}\right)
$$

STEP 3 :

$V=\pi \int_{-5}^{5} x^{2} \cdot d y<$ About y - axis

$$
\begin{aligned}
& =\pi \int_{-5}^{5} \frac{36}{25}\left(25-y^{2}\right) \cdot d y \\
& =\frac{36 \pi}{25} \int_{-5}^{5}\left(25-y^{2}\right) \cdot d y
\end{aligned}
$$

2. Evaluate : $\int \tan ^{-1} \sqrt{x} d x$

SOLUTION

$$
\text { LET } \begin{aligned}
\sqrt{x} & =\mathrm{t} \\
\frac{1 d x}{2 \sqrt{x}} & =\mathrm{dt} \\
\mathrm{dx} & =2 \sqrt{ } \mathrm{xdt} \\
\mathrm{dx} & =2 \mathrm{tdt}
\end{aligned}
$$

$=\int \tan ^{-1} t \cdot 2 t d t$
$=2 \int \tan ^{-1} \mathrm{t} \cdot \mathrm{tdt}$
$=2\left(\tan ^{-1} \mathrm{t} . \int \mathrm{t} d \mathrm{t}-\int \frac{\mathrm{d}}{\mathrm{tt}} \tan ^{-1} \mathrm{t} \int \mathrm{tdt} \mathrm{dt}\right)$
$=2\left(\tan ^{-1} \mathrm{t} \cdot \frac{\mathrm{t}^{2}}{2}-\int \frac{1}{1+\mathrm{t}^{2}} \frac{\mathrm{t}^{2}}{2} \mathrm{dt}\right)$
$=2\left(\frac{\mathrm{t}^{2}}{2} \tan ^{-1} \mathrm{t} .-\frac{1}{2} \int \frac{\mathrm{t}^{2}}{1+\mathrm{t}^{2}} \mathrm{dt}\right)$
$=\mathrm{t}^{2} \tan ^{-1} \mathrm{t} .-\int \frac{1+\mathrm{t}^{2}-1}{1+\mathrm{t}^{2}} \mathrm{dt}$
$=\quad \mathrm{t}^{2} \tan ^{-1} \mathrm{t} .-\int 1-\frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}$
$=\mathrm{t}^{2} \tan ^{-1} \mathrm{t} .-\mathrm{t}+\tan ^{-1} \mathrm{t}+\mathrm{c}$

RESUBSTITUTE

$=\quad x \cdot \tan ^{-1} \sqrt{ } x .-\sqrt{x}+\tan ^{-1} \sqrt{ } x+c$
03.
the processing cost of x bags is $\frac{2 x^{3}}{3}-48 x^{2}$,
and packing \& dispatching cost is $(1289 x+3750)$ Find the number of bags to be manufactured so as to minimize the marginal cost. Also find the marginal cost for that number of bags

$$
\begin{aligned}
& \text { SOLUTION } \\
& \begin{aligned}
C= & \frac{2 x^{3}}{3}-48 x^{2}+1289 x+3750 \\
C M & =\frac{d C}{d x} \\
& =\frac{6 x^{2}}{3}-96 x+1289 \\
& =2 x^{2}-96 x+1289
\end{aligned}
\end{aligned}
$$

$$
\frac{\mathrm{dC}}{\mathrm{dx}}=4 \mathrm{x}-96
$$

$$
\frac{\mathrm{d}^{2} \mathrm{CM}}{\mathrm{dx}^{2}}=
$$

$$
\begin{aligned}
& \frac{d C_{M}}{d x}=0 \\
& 4 x-96=0 \quad x=24
\end{aligned}
$$

$$
\left.\frac{\mathrm{d}^{2} \mathrm{CM}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}=24}=4>0
$$

C_{M} is minimum at $x=24$

$$
\begin{aligned}
\left.C_{M}\right|_{X=24} & =2(24)^{2}-96(24)+1289 \\
& =2(576)-2304+1289 \\
& =1152-2304+1289 \\
& =137
\end{aligned}
$$

1.

Using ALGEBRA OF STATEMENTS, prove

$$
p \wedge[(\sim p \vee q) \vee \sim q] \equiv p
$$

SOLUTION

```
    \(p \wedge((\sim p \vee q) \vee \sim q)\)
\(\equiv p \wedge[\sim p \vee(q \vee \sim q)] . .\). ASSOCIATIVE LAW
\(\equiv \mathrm{p} \wedge(\sim \mathrm{p} \vee \mathrm{t}) \quad . .\). COMPLEMENT LAW
\(\equiv \mathrm{p} \wedge \mathrm{t}\)... IDENTITY LAW
\(\equiv \mathrm{p}\)
```

2.

SOLUTION

$\frac{x}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3}$
$x=A(x+3)+B(x+2)$
Put $x=-3$

-3	$=$	$B(-3+2)$
-3	$=$	$B(-1)$
3	$=$	B

Put $x=-2$

$$
\begin{aligned}
-2 & =\mathrm{A}(-2+3) \\
-2 & =\mathrm{A}(1) \\
-2 & =\mathrm{A}
\end{aligned}
$$

HENCE
$\frac{x}{(x+2)(x+3)}=\frac{-2}{x+2}+\frac{3}{x+3}$
BACK IN THE SUM

$$
\begin{aligned}
& =\int_{2}^{3}\left(\frac{-2}{x+2}+\frac{3}{x+3}\right) d x \\
& =(-2 \log |x+2|+3 \log |x+3|)_{2}^{3}
\end{aligned}
$$

$$
=(-2 \log 5+3 \log 6)-(-2 \log 4+3 \log 5)
$$

$$
=-2 \log 5+3 \log 6+2 \log 4-3 \log 5
$$

$$
=2 \log 4+3 \log 6-5 \log 5
$$

$$
=\log 4^{2}+\log 6^{3}-\log 4^{5}
$$

$$
=\log 16+\log 216-\log 3125
$$

$$
=\log \left(\frac{16 \times 216}{3125}\right)
$$

$$
=\log \left(\frac{3456}{3125}\right)
$$

3. if $\sin y=x \cdot \sin (5+y)$; prove that $\quad \frac{d y}{d x}=\frac{\sin ^{2}(5+y)}{\sin 5}$

SOLUTION

$$
\begin{aligned}
x & =\frac{\sin y}{\sin (5+y)} \\
\frac{d x}{d y} & =\frac{\sin (5+y) \frac{d}{d y} \sin y-\sin y \frac{d}{d y} \sin (5+y)}{\sin ^{2}(5+y)}
\end{aligned}
$$

$$
=\frac{\sin (5+y) \cdot \cos y-\sin y \cos (5+y) d / d y(5+y)}{\sin ^{2}(5+y)}
$$

$$
=\frac{\sin (5+y) \cdot \cos y-\cos (5+y) \cdot \sin y}{\sin ^{2}(5+y)}
$$

$$
=\frac{\sin (5+y-y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin 5}{\sin ^{2}(5+y)}
$$

$$
\frac{d y}{d x}=\frac{1}{d x / d y}=\frac{\sin ^{2}(5+y)}{\sin 5}
$$

(08)
$I=\int_{0}^{2} x^{2}(2-x)^{1 / 2} d x$
$\begin{gathered}\text { SOLUTION } \\ \text { USING } \\ \int_{0}^{a} f(x) d x\end{gathered}=\int_{0}^{a} f(a-x) d x$
$I=\int_{0}^{2}(2-x)^{2} \cdot x^{1 / 2} d x$
$I=\int_{0}^{2}\left(4-4 x+x^{2}\right) \cdot x^{1 / 2} d x$
$I=\int_{0}^{2}\left(4 x^{1 / 2}-4 x^{3 / 2}+x^{5 / 2}\right) d x$
$I=\left(4 \frac{x^{3 / 2}}{\frac{3}{2}}-\frac{4 x^{5 / 2}}{\frac{5}{2}}+\frac{x^{7 / 2}}{\frac{7}{2}}\right)_{0}^{2}$
$I=\left(\frac{8}{3} x^{3 / 2}-\frac{8}{5} x^{5 / 2}+\frac{2 x^{7 / 2}}{7}\right)_{0}^{2}$
$I=\frac{8}{3} 2^{3 / 2}-\frac{8}{5} 2^{5 / 2}+\frac{2}{7} 2^{7 / 2}$
$I=\frac{8}{3} 2 \sqrt{ } 2-\frac{8}{5} 2^{2} \sqrt{ } 2+\frac{2}{7} 2^{3} \sqrt{ } 2$
$I=\frac{16 \sqrt{ } 2}{3}-\frac{32 \sqrt{ } 2}{5}+\frac{16 \sqrt{ } 2}{7}$
$I=16 \sqrt{ } 2\left(\frac{1}{3}-\frac{2}{5}+\frac{1}{7}\right)$
$I=16 \sqrt{ } 2 \frac{35-42+15}{105}$
$I=16 \sqrt{ } \frac{8}{105}$
$I=\frac{128}{105} \sqrt{ } 2$
02.
if f is continuous at $x=0$, then find $f(0)$ where
$f(x)=\frac{\left(3^{\sin x}-1\right)^{2}}{x \cdot \log (1+x)} ; x \neq 0$

SOLUTION

$$
\operatorname{Lim}_{x \rightarrow 0} f(x)
$$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\left(3^{\sin x}-1\right)^{2}}{x \cdot \log (1+x)}
$$

Divide N and D by $\sin ^{2} x, \sin ^{2} x \neq 0$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\frac{\left(3^{\sin x}-1\right)^{2}}{\sin ^{2} x}}{x \cdot \log (1+x)} \sin ^{2} x
$$

Divide N and D by $x^{2}, x^{2} \neq 0$
$\operatorname{Lim}_{x \rightarrow 0} \frac{\frac{\left(3^{\sin x}-1\right)^{2}}{\sin ^{2} x} \frac{\sin ^{2} x}{x^{2}}}{\frac{x \cdot \log (1+x)}{x^{2}}}$
$\operatorname{Lim}_{x \rightarrow 0} \frac{\left(\frac{3^{\sin x}-1}{\sin x}\right)^{2}\left(\frac{\sin x}{x}\right)^{2}}{\frac{\log (1+x)}{x}}$
$=\quad(\log 3)^{2} .(1) 2$
1
$=(\log 3)^{2}$

Since $f(x)$ is continuous at $x=0$

$$
\begin{aligned}
f(0) & =\operatorname{Lim}_{x \rightarrow 0} f(x) \\
& =(\log 3)^{2}
\end{aligned}
$$

3. $A=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$

Verify : A.(adj $A)=(\operatorname{adj} A) . A=|A| . I$

SOLUTION

$\mathrm{A}_{11}=(-1)^{1+1}\left|\begin{array}{rr}0 & -2 \\ 0 & 2\end{array}\right|=1(0-0)=0$
$\mathrm{A} 12=(-1)^{1+2}\left|\begin{array}{rr}3 & -2 \\ 1 & 3\end{array}\right|=-1(9+2)=-11$
$\mathrm{A}_{13}=(-1)^{1+3}\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right|=1(0-0)=0$

A21 $=(-1)^{2+1}\left|\begin{array}{rr}-1 & 2 \\ 0 & 3\end{array}\right|=-1(-3-0)=3$
$\mathrm{A}_{22}=(-1)^{2+2}\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=1(3-2)=1$
$\mathrm{A}_{23}=(-1)^{2+3}\left|\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right|=-1(0+1)=-1$

A31 $=(-1)^{3+1}\left|\begin{array}{rr}-1 & 2 \\ 0 & -2\end{array}\right|=1(2-0)=2$

A32 $=(-1)^{3+2}\left|\begin{array}{rr}1 & 2 \\ 3 & -2\end{array}\right|=-1(-2-6)=8$

A33 $=(-1)^{3+3}\left|\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right|=1(0+3)=3$

COFACTOR MATRIX OF A

$$
\left(\begin{array}{ccr}
0 & -11 & 0 \\
3 & 1 & -1 \\
2 & 8 & 3
\end{array}\right)
$$

ADJ A $=$ TRANSPOSE OF THE COFACTOR MATRIX

$$
=\left(\begin{array}{ccc}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right)
$$

$|A|$

$$
\begin{aligned}
& =1(0+0)+1(9+2)+2(0-0) \\
& =11
\end{aligned}
$$

LHS 1

$=\quad$ A. $(\operatorname{adj} \mathrm{A})$
$=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right) \quad\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)$
$=\left(\begin{array}{lll}0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

LHS 2

$=\quad(\operatorname{adj} \mathrm{A}) \cdot \mathrm{A}$
$=\left(\begin{array}{rcr}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$
$=\left(\begin{array}{rrc}0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

RHS

$=\quad|A| . I$
$=11\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$=\quad\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

HENCE \quad A. $(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| \cdot I$

SECTION - II

Q1. Attempt ANY SIX of the following

1. Find correlation coefficient between x and y for the following data
$\mathrm{n}=100, \overline{\mathrm{x}}=62, \overline{\mathrm{y}}=53, \sigma \mathrm{x}=10, \sigma y=12, \Sigma(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{y}-\overline{\mathrm{y}})=8000$
SOLUTION

$$
\begin{aligned}
r & =\frac{\operatorname{cov}(x, y)}{\sigma x \cdot \sigma y} \\
& =\frac{\frac{\sum(x-\bar{x})(y-\bar{y})}{n}}{\sigma x \cdot \sigma y} \\
& =\frac{\frac{8000}{100}}{10.12} \\
& =\frac{80}{10.12} \\
& =\frac{2}{3}
\end{aligned}
$$

2. a building is insured for 80% of its value. The annual premium at 70 paise percent amounts to $₹ 2,800$. Fire damaged the building to the extent of 60% of its value. How much amount for damage can be claimed under the policy

SOLUTION

03. The coefficient of rank correlation for a certain group of data is 0.5 . If $\Sigma \mathrm{d}^{2}=$ 42 , assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION
$R=0.5 ; \quad \Sigma d^{2}=42$
$R=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}$
$0.5=1-\frac{6(42)}{n\left(n^{2}-1\right)}$
$\frac{6(42)}{n\left(n^{2}-1\right)}=1-0.5$
$\frac{6(42)}{n\left(n^{2}-1\right)}=0.5$
$\frac{6(42)}{n\left(n^{2}-1\right)}=\frac{1}{2}$
$n\left(n^{2}-1\right)=6 \times 42 \times 2$
$n\left(n^{2}-1\right)=3 \times 2 \times 3 \times 2 \times 7 \times 2$
$(n-1) \cdot n \cdot(n+1)=7 \times 8 \times 9$

On comparing, $\mathrm{n}=8$
04.

Maya and Jaya started a business by investing equal amount. After 8 months Jaya withdrew her amount and Priya entered the business with same amount of capital. At the end of the year there was a profit of ₹ 13,200 . Find their share of profit

SOLUTION
STEP 1 :
Profits will be shared in the
'RATIO OF PERIOD OF INVESTMENT'

$=$| MAYA | JAYA | | PRIYA | |
| :---: | :---: | :---: | :---: | :---: |
| 12 | $:$ | 8 | $:$ | 4 |

TOTAL $=24$

STEP 2 :
PROFIT = ₹ 13,200

Maya's share of profit $=\frac{12}{24} \times 13,200$

Jaya's share of profit $=\frac{8}{24} \times 13,200$
$=₹ 4,400$

Priya'sshare of profit $=\frac{4}{24} \times 13,200$
$=₹ 2,200$
05. Calculate CDR for district A and B and compare solution

COMMENT : $\operatorname{CDR}(B)<\operatorname{CDR}(A)$. HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A
06. the probability of defective bolts in a workshop is 40%. Find the mean and variance of defective bolts out os 10 bolts

SOLUTION

$$
\begin{aligned}
& \mathrm{n}=10, \\
& \mathrm{p}=\text { probability of defective bolt }=\frac{40}{100}=\frac{2}{5} \\
& \mathrm{q}=1-\mathrm{p}=\frac{3}{5} \\
& \mathrm{X} \sim \mathrm{~B}(10,2 / 5) \\
& \text { Mean }=\mathrm{np}=10 \times \frac{2}{5}=4 \\
& \text { Variance }=\mathrm{npq}=10 \times \frac{2}{5} \times \frac{3}{5}=2.4
\end{aligned}
$$

7. The ratio of incomes of Salim \& Javed was 20:11. Three years later income of Salim has increased by 20% and income of Javed was increased by Rs 500 . Now the ratio of their incomes become 3:2. Find original incomes of Salim and Javed

SOLUTION

Let income of Salim	$=20 \mathrm{x}$
Income of Javed	$=11 \mathrm{x}$

As per the given condition

$$
\begin{aligned}
& 20 x+\frac{20(20 x)}{100}=\frac{3}{2} \\
& 11 x+500 \\
& \frac{20 x+4 x}{11 x+500}=\frac{3}{2} \\
& \frac{24 x}{11 x+500}=\frac{3}{2} \\
& 48 x=33 x+1500 \\
& \mathrm{x}=100 \\
& \text { Salim's original income }=20(100)=₹ 2000 \\
& \text { Javed's original income }=11(100)=₹ 1100
\end{aligned}
$$

8. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is Rs 10,000 . What is the accumulated value after 3 years $\left(1.1^{3}=1.331\right)$ SOLUTION

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& =10000(1+0.1)^{3} \\
& =10000(1.1)^{3} \\
& =10000(1.331) \\
& =₹ 13,310
\end{aligned}
$$

1. Obtain the expected value and variance of a random variable X for the following probability distribution

x	-2	-1	0	1	2	3
$P(X=x)$	0.1	k	0.2	$2 k$	0.3	k

STEP 1: $\sum \mathrm{p}(\mathrm{x})=1$

$$
\begin{aligned}
0.1+k+0.2+2 k+0.3+k & =1 \\
4 k+0.6 & =1 \\
4 k & =0.4 \quad k=0.1
\end{aligned}
$$

STEP 2:

x	-2	-1	0	1	2	3	
$p(x)$	0.1	0.1	0.2	0.2	0.3	0.1	
pi.xi	-0.2	- 0.1	0	0.2	0.6	0.3	$\sum \mathrm{pi} . \mathrm{xi}=0.8$
pi.xi ${ }^{2}$	0.4	0.1	0	0.2	1.2	0.9	$\sum \mathrm{pi} . \mathrm{xi}^{2}=2.8$

STEP 4: $\operatorname{Var}(x)=\sum \mathrm{pi} . \mathrm{xi}^{2}-\mathrm{E}(\mathrm{x})^{2}=2.8-0.8^{2}=2.8-0.64=2.16$
02. Calculate the Spearman's rank Correlation coefficient between the following marks given by two judges to 8 contestants in the election elocution

Marks by A	$:$	81	72	60	33	29	11	56	42
Marks by B	$:$	75	56	42	15	30	20	60	80
SOLUTION									

A	B	x	y	$d=\|x-y\|$	d^{2}
81	75	1	2	1	1
72	56	2	4	2	4
60	42	3	5	2	4
33	15	6	8	2	4
29	30	7	6	1	1
11	20	8	7	1	1
56	60	4	3	1	1
42	80	5	1	4	16
					$\Sigma d^{2}=32$

$$
\begin{aligned}
R & =1-\frac{6 \Sigma \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
& =1-\frac{6(32)}{8(64-1)} \\
& =1-\frac{6(32)}{8(63)} \\
& =1-\frac{8}{21} \\
& =\frac{13}{21} \\
& =0.62
\end{aligned}
$$

3. a wholesaler allows 25% trade discount and 5% cash discount. Find the list price of an article if it was sold for the net amount of Rs 1140 .
SOLUTION
List Price $=₹ 100$
Less 25% T.D. - 25
Invoice Price $=₹ 75$
Less 5\% C.D. $\quad-\quad 3.75$

Net Selling Price $\quad=\quad 71.25$
Now When ;
Net SP $=71.25$; List Price $=100$
Net SP $\quad=\square 1140 \quad ; \quad$ List Price $=\frac{1140 \times 100}{71.25}$
$=₹ 1600$

(B) Attempt ANY TWO of the following

1. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on three machines M_{1}, M_{2} and M_{3} in the order $M_{1} M_{2} M_{3}$. Also find the minimum elapsed time and idle time for all three machines

Job	A	B	C	D	E
M_{1}	5	7	6	9	5
M_{2}	2	1	4	5	3
M_{3}	3	7	5	6	7

STEP 1 : Min time on $M_{1}=5$; Max time on $M_{2}=5$; Min time on $M_{3}=3$
$\operatorname{Min}\left(M_{1}\right) \geq \operatorname{Max}\left(M_{2}\right) \ldots \ldots .$. condition satisfied to convert $3 \mathrm{~m} / \mathrm{c}^{\prime} \mathrm{s}$ to $2 \mathrm{~m} / \mathrm{c}^{\prime} \mathrm{s}$

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G \& H
$G=M_{1}+M_{2}, \quad H=M_{2}+M_{3}$

Job	A	B	C	D	E
G	7	8	10	14	8
H	5	8	9	11	10

STEP 3 : OPTIMAL SEQUENCE
Min time $=5$ on job A on machine H.

Next min time $=8$ on job $B \& E$ on machine G.

B	E			A

Next min time $=9$ on job C on machine H.

OPTIMAL SEQUENCE

\mathbf{B}	E		C	A

\mathbf{B}	\mathbf{E}	\mathbf{D}	\mathbf{C}	\mathbf{A}

STEP 4 : WORK TABLE

Job	B	E	D	C	A		total process time
M_{1}	7	5	9	6	5	$=$	32 hrs
M2	1	3	5	4	2	$=$	15 hrs
M3	7	7	6	5	3	$=$	28 hrs

JOBS	M1		IDLE TIME	M2		IDLE TIME	M3		IDLE TIME
	IN	OUT		IN	OUT		IN	OUT	
						7			8
B	0	7	--	7	8	4	8	15	--
E	7	12	--	12	15	6	15	22	4
D	12	21	--	21	26	1	26	32	--
C	21	27	--	27	31	1	32	37	--
A	27	32	8	32	34	6	37	40	--

STEP 5 : Total elapsed time $\mathrm{T}=40 \mathrm{hrs}$

$$
\begin{aligned}
\text { Idle time on } M_{1} & =T-\left(\text { sum of processing time of all } 5 \text { jobs on } M_{1}\right) \\
& =40-32 \\
& =8 \mathrm{hrs}
\end{aligned}
$$

$$
\begin{aligned}
\text { Idle time on } M_{2} & =T-\left(\text { sum of processing time of all } 5 \text { jobs on } M_{2}\right) \\
& =40-15 \\
& =25 \mathrm{hrs} \quad(\text { CHECK }-7+4+6+1+1+6=25)
\end{aligned}
$$

$$
\begin{aligned}
\text { Idle time on } M_{3} & =T-\left(\text { sum of processing time of all } 5 \text { jobs on } M_{3}\right) \\
& =40-28 \\
& =12 \mathrm{hrs} \quad(\text { CHECK }-8+4=12)
\end{aligned}
$$

X	$:$	6	2	10	4	8
Y	$:$	9	11	b	8	7

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient SOLUTION

$$
\bar{y}=\frac{\Sigma y}{n}
$$

$8=\frac{9+11+b+8+7}{5}+40=35+b$
$\therefore b=5$

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-2
30	40	0	0	40	20	-26
Σx	Σy	$\Sigma(x-\bar{x})$	$\Sigma(y-\bar{y})$	$\Sigma(x-\bar{x})^{2}$	$\Sigma(y-\bar{y})^{2}$	$\Sigma(x-\bar{x})(y-\bar{y})$
$\bar{x}=6$	$\bar{y}=8$					

$$
r=\frac{\Sigma(x-\bar{x}) \cdot(y-\bar{y})}{\sqrt{\Sigma(x-\bar{x})^{2}} \sqrt{\Sigma(y-\bar{y})^{2}}}
$$

$$
r=\frac{-26}{\sqrt{40 \times \sqrt{ } 20}}
$$

$$
r=\frac{-26}{\sqrt{40 \times 20}}
$$

$$
r^{\prime}=\frac{26}{\sqrt{40 \times 20}}
$$

taking \log on both sides

$$
\begin{aligned}
\log r^{\prime} & =\log 26-\frac{1}{2}(\log 40+\log 2 \varphi \\
\log r^{\prime} & =1.4150-\frac{1}{2}[1.6021+1.3010] \\
\log r^{\prime} & =1.4150-\frac{1}{2}(2.9031) \\
\log r^{\prime} & =1.4150-1.4516 \\
\log r^{\prime} & =\overline{1} .9634 \\
r^{\prime} & =A L \overline{(1} .9634)=0.9191 \\
r & =-0.9191
\end{aligned}
$$

3.

A bill drawn on $3^{\text {rd }}$ June for 6 months was discounted on $17^{\text {th }}$ Oct at rate of 5%. If the cash value is ₹ 43,500 , find the face value

STEP 2 :

Unexpired period
$=17^{\text {th }}$ Oct $-6^{\text {th }}$ Dec
OCT NOV DEC
$=14+30+6$
$=50$ days

STEP 3 :

B.D. = F.V. - C.V.
$=x-43,500$
01.

Age x	0	1	2
Ix	1000	880	876
Tx	$\ldots .$.	$\ldots .$.	3323

Calculate $\mathrm{e} 0^{0}, \mathrm{e}_{1}{ }^{0}, \mathrm{e} 2^{0}$

SOLUTION

$L_{\mathbf{x}}=\frac{\mathbf{I x}+\mathbf{x}+\mathbf{1}}{\mathbf{2}}$
$\checkmark L_{0}=\frac{10+/ 1}{2}=\frac{1000+880}{2}=940$
$\checkmark L_{1}=\frac{/ 1+/ 2}{2}=\frac{880+876}{2}=878$
$T_{x+1}=T_{x}-L_{x}$
$\checkmark \quad \mathrm{T}_{2}=\mathrm{T}_{1}-\mathrm{L}_{1}$
$3323=\mathrm{T}_{1}-878$
$\mathrm{T}_{1}=4201$

$$
\begin{aligned}
\checkmark \quad \mathrm{T}_{1} & =\mathrm{T}_{0}-\mathrm{L}_{0} \\
4201 & =\mathrm{T}_{0}-940 \\
\mathrm{~T}_{0} & =5141
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ex}^{0}=\frac{\mathrm{Tx}}{/ \mathrm{x}} \\
& \overline{\mathrm{e}_{0}{ }^{0}=\frac{\mathrm{T} 0}{/ 0}}=\frac{5141}{1000}=5.141 \\
& \mathrm{e}^{0}=\frac{\mathrm{T}_{1}}{/ 1}=\frac{4201=}{880}=\underset{\text { (USE LOG) }}{4.774} \\
& \mathrm{e}^{0}=\frac{\mathrm{T} 2}{\mathrm{~L} 2}=\frac{3323}{876}=\begin{array}{l}
3.793 \\
\text { (USE LOG) }
\end{array}
\end{aligned}
$$

2. Suppose X is a random variable with pdf

$$
f(x)=\frac{c}{x} \quad ; 1<x<3
$$

Find c ; $E(X)$
i) 3

$$
\int_{1}^{\int} \frac{c}{x} d x=1
$$

$\int_{1}^{3} \frac{1}{x} d x=1$ O
c $(\log x)_{1}^{3}=1$
c $(\log 3-\log 1)=1$

$$
\begin{aligned}
c \log 3 & =1 \\
c & =\frac{1}{\log 3}
\end{aligned}
$$

Hence X is a r.v. with pdf

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x} \cdot \log 3} ; 1<\mathrm{x}<3 \\
\mathrm{ii}(\mathrm{x}) & =\int_{1}^{3} \mathrm{x} \cdot \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{1}^{3} \mathrm{x} \cdot \frac{1}{\mathrm{x} \cdot \log 3} \mathrm{dx} \\
& =\int_{1}^{3} \frac{1}{\log 3} \mathrm{dx} \\
& =\left[\frac{x}{\log 3}\right]_{1}^{3} \\
& =\frac{2}{\log 3}
\end{aligned}
$$

3. the equation of the line of regression of Y on X is $3 X+2 y=26$ and X on Y is $6 x+y=31$. Find $\operatorname{var}(X)$ if $\operatorname{var}(Y)=36$

SOLUTION
Y on $X: 3 x+2 y=26$

$$
2 y=-3 x+26
$$

$$
y=\frac{-3 x}{2}+\frac{26}{2}
$$

$$
\text { byx }=-\frac{3}{2}
$$

X on $Y: 6 x+y=31$

$$
6 x=-y+31
$$

$$
x=-\frac{1}{6} y+\frac{31}{6}
$$

$$
b x y=-\frac{1}{6}
$$

$$
\begin{aligned}
r^{2} & =b y x x b x y \\
& =-\frac{3}{2} x-\frac{1}{6} \\
& =\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
r & =-\frac{1}{2} \cdots \cdots \quad \text { byx \& bxy are negative } \\
b x y & =r \frac{\sigma x}{\sigma y} \\
\frac{-1}{6} & =\frac{-1}{2} \frac{\sigma y}{6} \\
\sigma y & =2 \\
\therefore \operatorname{var}(y) & =4
\end{aligned}
$$

1. a team of 4 horses and 4 riders has entered the jumping show contest. The number of penalty points to be expected when each rider rides horse is shown below. How should the horses be assigned to the riders so as to minimize the expected loss. Also find the minimum expected loss

RIDERS

HORSES				
	H_{1}	H_{2}	H_{3}	H_{4}
R_{1}	12	3	3	2
R2	1	11	4	13
R3 2	11	10	6	11
R4	5	8	1	7

solution

10	1	1	0	Reducing the matrix using 'ROW MINIMUM'
0	10	3	12	
5	4	0	5	
4	7	0	6	
10	0	1	0	Reducing the matrix using 'COLUMN MINIMUM'
0	9	3	12	
5	3	0	5	
4	6	0	6	
10	0	1	\nsim	Allocation using 'SINGLE ZERO ROW COLUMN' method
0	9	3	12	
5	3	0	5	allocation INCOMPLETE
4	6	-	6	

REVISE THE MATRIX

			1	\nsim
	0			12
\checkmark	5	3	(0)	5
\checkmark	4	6	*	6
			\checkmark	

STEP 1 - Drawing minimum lines to cover ALL `0's

10	0	4	0
0	9	3	12
2	0	0	2
1	3	0	3

STEP 2 -REVISE THE MATRIX
reduce all the uncovered elements by its minimum \& add the same at the intersection

10	$\not X$	4	0
0	9	3	12
2	0	$\not O$	2
1	3	0	3

Since every row and every column contains an assigned zero, ASSIGNMNET PROBLEM is SOLVED

OPTIMAL ASSIGNMENT : $\mathrm{R}_{1}-\mathrm{H}_{4} ; \mathrm{R}_{2}-\mathrm{H}_{1} ; \quad \mathrm{R} 3-\mathrm{H}_{2} ; \quad \mathrm{R}_{4}-\mathrm{H}_{3}$

$$
\text { Minimum Penalty points }=2+1+10+1=14
$$

2. Information on vehicles (in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as
$\Sigma x=105 ; \Sigma y=409 \quad ; \quad \Sigma x^{2}=1681 ; \Sigma y^{2}=39350 ; \quad \Sigma x y=8075$
Obtain linear regression of Y on X
solution

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{105}{7}=15 \\
& \bar{y}=\frac{\Sigma y}{n}=\frac{409}{7}=58.43 \\
& \text { byx }=\frac{\mathrm{n} \Sigma \mathrm{xy}-\Sigma \mathrm{x} \cdot \Sigma \mathrm{y}}{\mathrm{n} \Sigma \mathrm{x}^{2}-(\Sigma \mathrm{x})^{2}} \\
& =\frac{7(8075)-(105)(409)}{7(1681)-(105)^{2}} \\
& \begin{array}{l}
=\frac{56525-42945}{11767-11025} \\
=\xrightarrow[742]{13580} \longrightarrow
\end{array} \\
& =18.30
\end{aligned}
$$

Equation

$$
\begin{aligned}
& y-\bar{y}=b y x(x-\bar{x}) \\
& y-58.43=18.30(x-15) \\
& y-58.43=18.30 x-274.5 \\
& y=18.30 x-274.50+58.43 \\
& y=18.30 x-216.07
\end{aligned}
$$

3. Minimize $z=2 x+y$

STEP 2 :
subject to $: x+y \leq 5, \quad x+2 y \leq 8,4 x+3 y \geq 12, x, y \geq 0$
Y - axis
SCALE : 1 CM = 1 UNIT STEP 1
$x+y \leq 5$
$x+2 y \leq 8$
$4 x+3 y \geq 12$
$x, y \geq 0$
$x+y=5$
cuts x - axis at $(5,0)$ cuts y - axis at $(0,5)$
$x+2 y=8$
cuts x - axis at $(8,0)$ cuts y - axis at $(0,4)$

Put $(0,0)$ in
$x+y \leq 5$
$0 \leq 5$
SS : ORIGIN SIDE

Put $(0,0)$ in
$x+2 y \leq 8$
$0 \leq 8$
SS : ORIGIN SIDE

Put $(0,0)$ in
$4 x+3 y \geq 12$
$0 \geq 12$
(NOT SATISFIED) SS :NON-ORIGIN SIDE

SS : I QUADRANT

STEP 3:

CORNERS	$Z=2 x+y$
$A(3,0)$	$Z=2(3)+0=6$
$B(0,4)$	$Z=2(0)+4=4$
$C(2,3)$	$Z=2(2)+3=7$
$D(5,0)$	$Z=2(5)+0=10$

STEP 4 :
Optimal Solution : Zmin $=4$ at $(0,4)$

