J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

SYJC PRELIUM - 02

SECTION - I

 $Q1. \ \mbox{Attempt ANY SIX} \ \mbox{of the following}$

 $\begin{array}{rcl}
\textbf{01.} & \text{Find} & X \text{ and } Y \text{ if } & X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} & ; & X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \\
\end{array}$ $\begin{array}{rcl}
\textbf{SOLUTION} \\
X + Y &= \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} & X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} \\
X - Y &= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} & X - Y &= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \\
\hline
X - Y &= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} & 2Y &= \begin{pmatrix} 4 & 0 \\ 2 & 2 \end{pmatrix} \\
\hline
X &= \begin{pmatrix} 10 & 0 \\ 2 & 8 \end{pmatrix} & 2Y &= \begin{pmatrix} 4 & 0 \\ 2 & 2 \end{pmatrix} \\
X &= \begin{pmatrix} 10 & 0 \\ 2 & 8 \end{pmatrix} & Y &= \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix} \\
X &= \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix} & Y &= \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \\
\end{array}$

02. Find dy/dx if
$$y = \cos^{-1} \left[2x \sqrt{1 - x^2} \right]$$

SOLUTION

$$y = \cos^{-1} 2x \sqrt{1 - x^{2}} \quad \text{Put } x = \sin \theta$$

$$y = \cos^{-1} \left[2\sin\theta \sqrt{1 - \sin^{2}\theta} \right]$$

$$y = \cos^{-1} \left[2\sin\theta \sqrt{\cos^{2}\theta} \right]$$

$$y = \cos^{-1} (2\sin\theta \cos\theta)$$

$$y = \cos^{-1} (\sin^{2}\theta)$$

$$y = \cos^{-1} \cos(\pi/2 - 2\theta)$$

$$y = \pi/2 - 2\theta$$

$$y = \pi/2 - 2\sin^{-1}x$$

$$\frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^{2}}}$$

(12)

04. Find dy/dx if $x = \sin^3 \theta$, $y = \cos^3 \theta$

SOLUTION

$$\begin{array}{c|cccc} x = \sin^{3}\theta & & & \\ \frac{dx}{d\theta} & = 3\sin^{2}\theta & \frac{d}{d\theta} \sin\theta \\ & & & \frac{dy}{d\theta} & = 3\cos^{2}\theta & \frac{d}{d\theta}\cos\theta \\ & & & & \frac{dy}{d\theta} & = \frac{dy/d\theta}{dx/d\theta} \\ & & & & \frac{dy}{d\theta} & = \frac{dy/d\theta}{dx/d\theta} \\ & & & & & \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \\ & & & & = -3\cos^{2}\theta & \sin\theta \\ & & & & & \frac{3\sin^{2}\theta & \cos\theta}{3\sin^{2}\theta & \cos\theta} \\ & & & & & = -\cot\theta \end{array}$$

04. Write negations of the following statements

- 1. $\forall y \in N , y^2 + 3 \le 7$ Negation : $\exists y \in N$, such that $y^2 + 3 > 7$
- 2. if the lines are parallel then their slopes are equal

Using : $\underline{\sim}(P \rightarrow Q) = P \land \sim Q$ Negation : lines are parallel and their slopes are not equal

05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75 SOLUTION

$$Rm = RA \left(\frac{1-1}{\eta} \right)$$

$$50 = 75 \left(\frac{1-1}{\eta} \right)$$

$$\frac{50}{75} = 1 - \frac{1}{\eta}$$

$$\frac{2}{3} = 1 - \frac{1}{\eta}$$

$$\frac{1}{\eta} = 1 - \frac{2}{3}$$

$$\frac{1}{\eta} = \frac{1}{3}$$

$$\eta = 3$$

- 06. State which of the following sentences are statements . In case of statement , write down the truth value
 - a) Every quadratic equation has only real roots

ans : the given sentence is a logical statement . Truth value : ${\sf F}$

b) $\sqrt{-4}$ is a rational number

ans : the given sentence is a logical statement . Truth value : F

07. Evaluate :
$$\int \frac{\sec^2 x}{\tan^2 x + 4} dx$$

SOLUTION PUT $\tan x = t$ $\sec^2 x \cdot dx = dt$ THE SUM IS $= \int \frac{1}{t^2 + 4} dt$ $= \int \frac{1}{t^2 + 2^2} dt$ $= \frac{1}{a} \tan^{-1} \frac{t}{a} + c$ $= \frac{1}{2} \tan^{-1} \frac{t}{2} + c$ Resubs. $= \frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2}\right) + c$

08. if
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then find |AB|

SOLUTION

AB
=
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

= $\begin{pmatrix} 1+3 & 2+4 \\ 2+6 & 4+8 \end{pmatrix}$
= $\begin{pmatrix} 4 & 6 \\ 8 & 12 \end{pmatrix}$
|AB| = 4(12) - 8(6) = 48 - 48 = 0

SOLUTION

PART - 1

 $x \rightarrow 2-$

x→2

STEP 2

Lim f(x) x→2+

= Lim 3x + 2

x→2

STEP 3

STEP 4

Lim f(x)

STEP 1

01. if the function given below is continuous at x = 2 and x = 4 then find a & b $f(x) = x^2 + ax + b$; x < 2= 3x + 2; $2 \le x \le 4$ = 2ax + 5b; 4 < x **PART – 2** STEP 1 Lim f(x) $x \rightarrow 4-$ = Lim 3x + 2= Lim x^2 + ax + b x→4 = 3(4) + 2 = 14 $= 2^2 + a(2) + b$ = 4 + 2a + b STEP 2 Lim f(x) $x \rightarrow 4+$ = Lim 2ax + 5b $x \rightarrow 4$ = 2a(4) + 5b = 3(2) + 2 = 8 = 8a + 5b STEP 3 f(2) = 3(2) + 2 = 8f(4) = 3(4) + 2 = 14STEP 4 Since the f is continuous at x = 2Since the f is continuous at x = 4 $Lim \quad f(x) = Lim \quad f(x) = f(2)$ Lim f(x) = Lim f(x) = f(4) $x \rightarrow 2 x \rightarrow 2+$ $x \rightarrow 4 x \rightarrow 4+$ 4 + 2a + b = 8 = 814 = 8a + 5b = 142a + b = 4(1)

Solving (1) and (2) : a = 3, b = -2

02.

Using rules of negations , write the negation of the following a) $p \land (q \rightarrow r)$ b) $\sim p \lor \sim q$ a) $\sim (p \land (q \rightarrow r))$ $\sim p \lor \sim (q \rightarrow r)$ De Morgan's Law $\sim p \lor (q \land r)$ $\sim (P \rightarrow Q) = P \land \sim Q$

03.

a manufacturing company produces x items at the total cost of (180 + 4x). The demand function is p = 240 - x. Find x for which the profit is increasing

SOLUTION

$$R = px$$

= 240x - x²
$$C = 180 + 4x$$

$$\pi = R - C$$

= 240x - x² - 180 - 4x
= 236x - x² - 180

For Profit increasing

$$\frac{d\pi}{dx} > 0$$
236 - 2x > 0
236 - 2x
118 > x
x < 118

Q1. Find the volume of the solid obtained by the complete revolution of the ellipse

$$\frac{x^2}{36} + \frac{y^2}{25} = 1 \text{ about } y - axis$$

STEP 2:

 $\frac{x^2}{36} + \frac{y^2}{25} = 1$ $\frac{x^2}{36} = 1 - \frac{y^2}{25}$ $\frac{x^2}{36} = \frac{25 - y^2}{25}$ $x^2 = \frac{36}{25}(25 - y^2)$

STEP 3 :

Q2B

5

$$= \frac{36\pi}{25} \left(25\gamma - \frac{\gamma^3}{3} \right)_{-5}^{-5}$$

$$= \frac{36\pi}{25} \left\{ \left(125 - \frac{125}{3} \right) - \left(-125 + \frac{125}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \left(\frac{375 - 125}{3} \right) - \left(-\frac{375 + 125}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \left(\frac{250}{3} \right) - \left(-\frac{250}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \frac{500}{3} \right\}$$

$$= 240 \pi \text{ cubic units}$$

02. Evaluate : $\int \tan^{-1} \sqrt{x} \, dx$ SOLUTION

LET $\sqrt{x} = t$ $\frac{1 dx}{2\sqrt{x}} = dt$ $dx = 2\sqrt{x}dt$ dx = 2t dt

=
$$\int tan^{-1}t$$
. 2t dt

= $2 \int \tan^{-1} t \cdot t \, dt$

$$= 2 \left[\tan^{-1}t \cdot \int t \, dt - \int \frac{d}{dt} \tan^{-1}t \int t \, dt \, dt \right]$$
$$= 2 \left[\tan^{-1}t \cdot \frac{t^2}{2} - \int \frac{1}{1+t^2} \frac{t^2}{2} \, dt \right]$$
$$= 2 \left[\frac{t^2}{2} \tan^{-1}t \cdot - \frac{1}{2} \int \frac{t^2}{1+t^2} \, dt \right]$$

$$= t^{2} \tan^{-1}t \cdot - \int \frac{1+t^{2}-1}{1+t^{2}} dt$$

$$= t^{2} \tan^{-1}t \cdot - \int 1 - \frac{1}{1+t^{2}} dt$$

$$=$$
 t² tan⁻¹t. - t + tan⁻¹t + c

RESUBSTITUTE

$$= x.\tan^{-1}\sqrt{x} \cdot - \sqrt{x} + \tan^{-1}\sqrt{x} + c$$

Q2B

03.

the processing cost of x bags is $\frac{2x^3}{3} - 48x^2$,

and packing & dispatching cost is (1289x + 3750) Find the number of bags to be manufactured so as to minimize the marginal cost . Also find the marginal cost for that number of bags

SOLUTION

$$C = \frac{2x^{3}}{3} - 48x^{2} + 1289x + 3750$$

$$C_{M} = \frac{dC}{dx}$$

$$= \frac{6x^{2}}{3} - 96x + 1289$$

$$= 2x^{2} - 96x + 1289$$

$$\frac{dC_{M}}{dx} = 4x - 96$$

$$\frac{d^{2}C_{M}}{dx^{2}} = 4$$

$$\frac{dC_{M}}{dx^{2}} = 0$$

$$4x - 96 = 0 \quad x = 24$$

$$\frac{d^{2}C_{M}}{dx^{2}} \Big|_{x = 24} = 4 > 0$$

 C_M is minimum at x = 24

$$C_{M} \begin{vmatrix} x = 24 \\ x = 24 \end{vmatrix} = 2(24)^{2} - 96(24) + 1289$$
$$= 2(576) - 2304 + 1289$$
$$= 1152 - 2304 + 1289$$
$$= 137$$

01. Using ALGEBRA OF STATEMENTS, prove $p \land ((\sim p \lor q) \lor \sim q) \equiv p$ SOLUTION $p \land ((\sim p \lor q) \lor \sim q)$ $\equiv p \land (\sim p \lor q) \lor \sim q)$... ASSOCIATIVE LAW $\equiv p \land (\sim p \lor t)$... COMPLEMENT LAW $\equiv p \land t$... IDENTITY LAW $\equiv p$ 02. 3 $\int x dx$

$$\int_{2}^{\infty} \frac{x}{(x+2)(x+3)} dx$$
SOLUTION
$$\frac{x}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$$

$$x = A(x+3) + B(x+2)$$
Put x = -3
$$-3 = B(-3+2)$$

$$-3 = B(-1)$$

$$3 = B$$
Put x = -2
$$-2 = A(-2+3)$$

$$-2 = A(1)$$

$$-2 = A$$

HENCE

$$\frac{x}{(x+2)(x+3)} = \frac{-2}{x+2} + \frac{3}{x+3}$$

BACK IN THE SUM

$$= \int_{2}^{3} \left(\frac{-2}{x+2} + \frac{3}{x+3} \right) dx$$
$$= \left(-2 \log |x+2| + 3 \log |x+3| \right)_{2}^{3}$$

 $= \left(-2\log 5 + 3\log 6 \right) - \left(-2\log 4 + 3\log 5 \right)$ $= -2 \log 5 + 3 \log 6 + 2 \log 4 - 3 \log 5$ = 2 log 4 + 3 log 6 - 5 log 5 $= \log 4^2 + \log 6^3 - \log 4^5$ = log 16 + log 216 - log 3125 $= \log \left(\frac{16 \times 216}{3125}\right)$ $= \log \left(\frac{3456}{3125}\right)$ 03. if $\sin y = x \cdot \sin(5 + y)$; prove that $\frac{dy}{dx} = \frac{\sin^2(5+y)}{\sin^5}$ SOLUTION x = <u>sin y</u> sin (5 + y) $\frac{dx}{dy} = \frac{\frac{\sin(5+y)}{\frac{d}{y}} \frac{d}{\sin y} - \sin y}{\frac{d}{y}} \frac{\sin(5+y)}{\sin^2(5+y)}$ $= \frac{\sin(5+y).\cos y - \sin y \cos(5+y)^{d}/dy(5+y)}{\sin^2(5+y)}$ = sin(5+y).cosy - cos(5+y).sin y $sin^2(5+y)$ $= \frac{\sin(5+y-y)}{\sin^2(5+y)}$ $\frac{dx}{dy} = \frac{\sin 5}{\sin^2(5+y)}$ $= \frac{1}{dx/dy} = \frac{\sin^2(5+y)}{\sin 5} \dots \text{PROVED}$ dy dx

(06)

(B) Attempt ANY TWO of the following

$$I = \int_{0}^{2} x^{2}(2-x)^{1/2} dx$$
SOLUTION

$$I = \int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x) dx$$

$$I = \int_{0}^{2} (2-x)^{2} \cdot x^{1/2} dx$$

$$I = \int_{0}^{2} (4-4x+x^{2}) \cdot x^{1/2} dx$$

$$I = \int_{0}^{2} (4x^{1/2}-4x^{3/2}+x^{5/2}) dx$$

$$I = \left(\frac{4x^{3/2}}{\frac{3}{2}} - \frac{4x^{5/2}}{\frac{5}{2}} + \frac{x^{7/2}}{\frac{7}{2}}\right)_{0}^{2}$$

$$I = \left(\frac{8x^{3/2}}{\frac{3}{2}} - \frac{8x^{5/2}}{\frac{5}{2}} + \frac{2x^{7/2}}{\frac{7}{2}}\right)_{0}^{2}$$

$$I = \frac{82^{3/2}}{\frac{3}{2}} - \frac{82^{5/2}}{\frac{5}{2}} + \frac{2}{\frac{7}{2}}^{2/2}$$

$$I = \frac{82^{3/2}}{\frac{3}{2}} - \frac{82^{5/2}}{\frac{5}{2}} + \frac{2}{\frac{7}{2}}^{2/2}$$

$$I = \frac{16\sqrt{2}}{\frac{3}{2}} - \frac{82^{5/2}}{\frac{5}{2}} + \frac{2}{\frac{7}{2}}^{2/3}\sqrt{2}$$

$$I = \frac{16\sqrt{2}}{\frac{3}{2}} - \frac{32\sqrt{2}}{\frac{5}{2}} + \frac{16\sqrt{2}}{\frac{7}{2}}$$

$$I = 16\sqrt{2}\left(\frac{1}{3} - \frac{2}{5} + \frac{1}{7}\right)$$

$$I = 16\sqrt{2}\frac{8}{105}$$

$$I = \frac{128\sqrt{2}}{105}$$

Q3B (08)

02.

if f is continuous at x = 0 , then find f(0) where $f(x) = \frac{(3^{sinx} - 1)^2}{x \cdot \log(1 + x)}; \quad x \neq 0$

SOLUTION

$$\lim_{x \to 0} f(x)$$

$$\lim_{x \to 0} \frac{(3^{\sin x} - 1)^2}{x \cdot \log(1 + x)}$$

Divide N and D by $\sin^2 x$, $\sin^2 x \neq 0$

$$\lim_{x \to 0} \frac{\frac{(3^{\sin x} - 1)^2}{\sin^2 x}}{x \cdot \log(1 + x)}$$

Divide N and D by x^2 , $x^2 \neq 0$

$$\lim_{x \to 0} \frac{\frac{(3^{\sin x} - 1)^2}{\sin^2 x} \frac{\sin^2 x}{x^2}}{\frac{x \cdot \log(1 + x)}{x^2}}$$

$$\lim_{x \to 0} \frac{\left(\frac{3^{\sin x} - 1}{\sin x}\right)^2 \left(\frac{\sin x}{x}\right)^2}{\frac{\log(1 + x)}{x}}$$

=
$$(\log 3)^2 . (1)^2$$

$$= (\log 3)^2$$

Since f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$
$$= (\log 3)^2$$

03. $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ Q3B	ADJ A = TRANSPOSE OF THE COFACTOR MATRIX $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & 1 & 3 \end{pmatrix}$
Verify : A.(adj A) = (adj A).A = A .I	
SOLUTION	$ \mathbf{A} = 1(0 + 0) + 1(9 + 2) + 2(0 - 0)$
$A_{11} = (-1)^{-1} \begin{vmatrix} 0 & -2 \\ 0 & 2 \end{vmatrix} = 1(0-0) = 0$	= 11 LHS 1
4 - 2	= A.(adj A)
A12 = $(-1)^{1+2}$ $\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix}$ = $-1(9+2)$ = -11	$= \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$
$A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 1(0-0) = 0$	$= \begin{pmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9 \end{pmatrix}$
$A_{21} = (-1)^{2+1} \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = -1(-3 - 0) = 3$	$= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$
$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1(3-2) = 1$	LHS 2 = (adj A). A
$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = -1(0+1) = -1$	$= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$
$A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 1(2 - 0) = 2$	$= \begin{pmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9 \end{pmatrix}$
$A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = -1(-2-6) = 8$	$= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$
A ₃₃ = $(-1)^{3+3} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1(0+3) = 3$	$\mathbf{RHS} = \mathbf{A} .\mathbf{I}$
COFACTOR MATRIX OF A	$= 11 \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$
$\left(\begin{array}{rrrr} 0 & -11 & 0 \\ 3 & 1 & -1 \\ 2 & 8 & 3 \end{array}\right)$	$= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$
	HENCE A.(adj A)= (adj A).A= A .I

$Q1. \ \mbox{Attempt ANY SIX} \ \mbox{of the following}$

01. Find correlation coefficient between x and y for the following data

n = 100,
$$\overline{x} = 62$$
, $\overline{y} = 53$, $\sigma x = 10$, $\sigma y = 12$, $\Sigma(x - \overline{x})(y - \overline{y}) = 8000$
SOLUTION r = $\frac{\operatorname{cov}(x, y)}{\sigma x \cdot \sigma y}$
= $\frac{\frac{\Sigma(x - \overline{x})(y - \overline{y})}{n}}{\sigma x \cdot \sigma y}$
= $\frac{\frac{8000}{100}}{10.12}$
= $\frac{80}{10.12}$
= $\frac{2}{3}$

02. a building is insured for 80% of its value . The annual premium at 70 paise percent amounts to ₹ 2,800 . Fire damaged the building to the extent of 60% of its value . How much amount for damage can be claimed under the policy

SOLUTION

Property value =	₹x	х	=	100 x 5000
Insured value =	$\frac{80x}{x} = \frac{4x}{x}$	x	=	5,00,000
	100 5	Property valu	ue =	₹ 5,00,000
Rate of premium	= 70 paise percent			
	= 0.70%	Loss	=	<u>60</u> x 5,00,000
Premium	= ₹ 2800			100
2800	= 0.70 x 4x		=	₹ 3,00,000
	100 5	Claim	=	80% of loss
2800	$=\frac{7}{1000} \times \frac{4x}{5}$		=	80 x 3,00,000
2800	204			100
2800	$= \frac{28x}{5000}$		=₹	₹ 2,40,000

(12)

03. The coefficient of rank correlation for a certain group of data is 0.5. If $\sum d^2 = 42$, assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION

 $R = 0.5 ; \Sigma d^{2} = 42$ $R = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ $0.5 = 1 - \frac{6(42)}{n(n^{2} - 1)}$ $\frac{6(42)}{n(n^{2} - 1)} = 1 - 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = \frac{1}{2}$ $n(n^{2} - 1) = 6 \times 42 \times 2$ $n(n^{2} - 1) = 3 \times 2 \times 3 \times 2 \times 7 \times 2$ $(n - 1).n.(n + 1) = 7 \times 8 \times 9$ On comparing, n = 8

Q4

04.

Maya and Jaya started a business by investing equal amount . After 8 months Jaya withdrew her amount and Priya entered the business with same amount of capital . At the end of the year there was a profit of ₹ 13,200 . Find their share of profit

SOLUTION

STEP 1 :

Profits will be shared in the 'RATIO OF PERIOD OF INVESTMENT'

	MAYA	JAYA		PRIYA	
=	12 :	8	:	4	-
				тс)TAL = 24
STE	P2:				
PRO	FIT = ₹	13,200			
May	a's share c	of profit	= _	<u>12</u> x 13 24	,200
			=	₹ 6,600	
Jaya	a's share o	f profit	= _	<u>8</u> x13, 24	200
			=	₹ 4,400	
Priy	a'sshare of	f profit	= _	<u>4</u> x13, 24	200
			=	₹ 2,200	

05. Calculate CDR for district A and B and compare SOLUTION

Age	DISTR	ICT A	DISTR	аст в
Group	NO. OF	NO. OF	NO. OF	NO. OF
(Years)	PERSONS	DEATHS	PERSONS	DEATHS
	Р	D	Р	D
0 - 10	1000	18	3000	70
10 - 55	3000	32	7000	50
Above 55	2000	41	1000	24
	ΣP = 6000	ΣP = 11000	ΣD = 144	
CDR(A	$A) = \frac{\Sigma D}{\Sigma P} x$	CDR(B) =	$\frac{\Sigma D}{\Sigma P} \times 1000$	
	$= \frac{91 \text{ x}}{6000}$	1000	=	$\frac{144}{11000} \times 100$
	= 15.17 (deaths per th	= (death	13.09 s per thousand	

COMMENT : CDR(B) < CDR(A) . HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A

06. the probability of defective bolts in a workshop is 40% . Find the mean and variance of defective bolts out os 10 bolts $\,$

SOLUTION

n = 10, p = probability of defective bolt = $\frac{40}{100} = \frac{2}{5}$ q = $1 - p = \frac{3}{5}$ X ~ B(10,²/5) Mean = np = $10 \times \frac{2}{5} = 4$ Variance = npq = $10 \times \frac{2}{5} \times \frac{3}{5} = 2.4$ 07. The ratio of incomes of Salim & Javed was 20:11. Three years later income of Salim has increased by 20% and income of Javed was increased by Rs 500. Now the ratio of their incomes become 3 : 2. Find original incomes of Salim and Javed SOLUTION

Let income of Salim	= 20x
Income of Javed	= 11x

As per the given condition

20x + 20(20x)	=	3							
100		2							
11x + 500									
20x + 4x	=	3							
11x + 500		2							
24x	=	3							
11x + 500		2							
48x	=	33x + 1500							
х	=	100							
Salim's original income		= 20(100)	=	₹ 2000					
Javed's original income		= 11(100)	=	₹ 1100					

08. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is Rs 10,000. What is the accumulated value after 3 years ($1.1^3 = 1.331$) SOLUTION

A	= $P(1 + i)^{n}$
=	$10000(1 + 0.1)^3$
=	10000(1.1) ³
=	10000(1.331)
=	₹ 13,310

Q5.(A) Attempt ANY TWO of the following

01. Obtain the expected value and variance of a random variable X for the following probability distribution $% \left(\frac{1}{2} \right) = 0$

x	-2	-1	0	1	2	3	
P(X = x)	0.1	k	0.2	2k	0.3	k	

STEP 1: $\sum p(x) = 1$ 0.1 + k + 0.2 + 2k + 0.3 + k = 1 4k + 0.6 = 14k = 0.4 k = 0.1

STEP 2:

x	-2	-1	0	1	2	3		
p(x)	0.1	0.1	0.2	0.2	0.3	0.1		
pi.xi	-0.2	- 0.1	0	0.2	0.6	0.3	∑pi.xi	= 0.8
pi.xi ²	0.4	0.1	0	0.2	1.2	0.9	∑pi.xi ²	= 2.8

STEP 3 :
$$E(x) = \sum pi.xi = 0.8$$

STEP 4: Var (x) =
$$\sum pi.xi^2 - E(x)^2 = 2.8 - 0.8^2 = 2.8 - 0.64 = 2.16$$

02. Calculate the Spearman's rank Correlation coefficient between the following marks given by two judges to 8 contestants in the election elocution

Marks by A	:	81	72	60	33	29	11	56	42
Marks by B	:	75	56	42	15	30	20	60	80
SOLUTION									

A	В	х	у	d = x - y	d ²			
81	75	1	2	1	1	R =	1 –	
72	56	2	4	2	4		1	n(
60	42	3	5	2	4	=	1 –	8(
33	15	6	8	2	4	=	1 –	$\frac{6}{6}$
29	30	7	6	1	1	_	1	8(°
11	20	8	7	1	1	=	1 –	0 21
56	60	4	3	1	1	=	$\frac{13}{21}$	
42	80	5	1	4	16		21	
					$\Sigma d^2 = 32$	=	0.62	

)5A

 $03. \ \ a \ \ wholesaler \ \ allows \ \ 25\% \ trade \ \ discount \ \ and \ \ 5\% \ \ cash \ \ discount \ \ . \ \ Find \ the \ \ list \ \ price \ \ of \ \ an \ \ article \ \ if \ \ it \ \ was \ sold \ \ for \ the \ \ net \ \ amount \ \ of \ \ Rs \ \ 1140 \ .$

SOLUTION

List Price		=	₹	100				
Less 25% 1	ſ.D.		_	25				
Invoice Prie	се	=	₹	75				
Less 5% C.	D.		-	3	.75			
Net Selling	Price	=	₹	71	.25			
Now When	;							
Net SP	= 71.25 ;	L	ist	Price	=	10	0	
Net SP	= 1140	;	Li	st Pr	ice	=	1140	x100
							71.2	5
					=	₹	1600	

(B) Attempt ANY TWO of the following

01. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on three machines M1, M2 and M3 in the order M1M2M3. Also find the minimum elapsed time and idle time for all three machines

Job	А	В	С	D	E
M_1	5	7	6	9	5
M_2	2	1	4	5	3
M_3	3	7	5	6	7

STEP 1 : Min time on $M_1 = 5$; Max time on $M_2 = 5$; Min time on $M_3 = 3$ Min $(M_1) \ge Max (M_2)$ condition satisfied to convert 3 m/c's to 2 m/c's

STEP 2	:	CONVERTING TO 2 FICTITIOUS M/C'S G & H	ł
	•		

=	$M_1 + M_2$, н	= M ₂ +	M3	
Job	А	В	С	D	Е
G	7	8	10	14	8
Н	5	8	9	11	10

STEP 3 : OPTIMAL SEQUENCE

G

Min time = 5 on job A on machine H.

(08)

3

Next min time = 8 on job B & E on machine G .

Next min time = 9 on job C on machine H.

OPTIMAL SE	OUENCE				В	E	с	А
	<u> </u>	_			i	_		
	В	E	D	С	A			
					I			

STEP 4 : WORK TABLE

Job	В	Е	D	С	А		total process time
M1	7	5	9	6	5	=	32 hrs
M2	1	3	5	4	2	=	15 hrs
M3	7	7	6	5	3	=	28 hrs

JOBS	I	۷1	IDLE	M2		IDLE M3			IDLE
	IN	ОИТ	TIME	IN	ОUT	TIME	IN	ουτ	TIME
						7			8
В	0	7		7	8	4	8	15	
E	7	12		12	15	6	15	22	4
D	12	21		21	26	1	26	32	
с	21	27		27	31	1	32	37	
A	27	32	8	32	34	6	37	40	

STEP 5 : Total elapsed time T = 40 hrs

Idle time on M₁ = T - $\left(\begin{array}{c} \text{sum of processing time of all 5 jobs on M}_{1} \right)$ = 40 - 32 = 8 hrs Idle time on M₂ = T - $\left(\begin{array}{c} \text{sum of processing time of all 5 jobs on M}_{2} \right)$ = 40 - 15 = 25 hrs (CHECK - 7 + 4 + 6 + 1 + 1 + 6 = 25)

Idle time on M₃ = T - $\left(\begin{array}{c} \text{sum of processing time of all 5 jobs on M}_{3} \right)$ = 40 - 28 = 12 hrs (CHECK - 8 + 4 = 12) 02. X: 6 2 10 4 8 Y: 9 11 b 8 7 Q5B

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient SOLUTION $y = \frac{\Sigma y}{n}$ $8 = \frac{9 + 11 + b + 8}{5} + 7 \rightarrow 40 = 35 + b$ $\therefore b = 5$

x
 y

$$\overline{x-x}$$
 $\overline{y-y}$
 $(x-\overline{x})^2$
 $(y-\overline{y})^2$
 $(x-\overline{x})(y-\overline{y})$

 6
 9
 0
 1
 0
 1
 0

 2
 11
 -4
 3
 16
 9
 -12

 10
 5
 4
 -3
 16
 9
 -12

 4
 8
 -2
 0
 4
 0
 0

 8
 7
 2
 -1
 4
 1
 -2

 30
 40
 0
 0
 40
 20
 -26

 \overline{x}
 \overline{y}
 $\overline{x}(\overline{x}, \overline{x})$
 $\overline{x}(\overline{y}, \overline{y})$
 $\overline{x}(\overline{x}, \overline{x})(\overline{y}, \overline{y})$
 \overline{x}
 6
 \overline{y}
 8
 \overline{y}
 $\overline{x}(\overline{x}, \overline{x})^2$
 $\overline{x}(\overline{x}, \overline{x})^2$

$$r = \frac{\Sigma(x - \overline{x}).(y - \overline{y})}{\sqrt{\Sigma(x - \overline{x})^2} \sqrt{\Sigma(y - \overline{y})^2}}.$$

$$r = \frac{-26}{\sqrt{40 \times \sqrt{20}}}$$
$$r = \frac{-26}{\sqrt{40 \times 20}}$$

$$r' = \frac{26}{\sqrt{40 \times 20}}$$

taking log on both sides

 $\log r' = \log 26 - \frac{1}{2} (\log 40 + \log 2)$ $\log r' = 1.4150 - \frac{1}{2} [1.6021 + 1.3010]$ $\log r' = 1.4150 - \frac{1}{2} (2.9031)$ $\log r' = 1.4150 - 1.4516$ $\log r' = \overline{1} \cdot 9634$ $r' = AL(\overline{1} \cdot 9634) = 0.9191$ r = -0.9191

Q5B

03.

A bill drawn on 3^{rd} June for 6 months was discounted on 17^{th} Oct at rate of 5% . If the cash value is ₹ 43,500 , find the face value

SOLUTION

due 6 mo	onths @ 5 % p.a.		
↓	•	•	
3 rd Jun	17 th Oct	6 th Dec	
	₹ 43,500	₹x	STEP 4 :
STEP 1 :			
Date of drawin	g = 3 / C	6	B.D. = Int on F.V. for 50 days $@$ 5% p.a.
Add period of b	oill + 6 mo	nths	$x - 43500 = x' \times 50 \times 5$
Nominal due da	ate = 3 / 1	2/	365 100
Add Grace days	s + 3	/ ays	x - 43500 = x
Legal due date	= 6 / 1	2 th December	146
STEP 2 :			$\frac{145x}{146} = 43500$
Unexpired period			
= 17 th Oct	- 6 th Dec		$x = \frac{43500 \times 146}{145}$
ОСТ	NOV DEC		x = ₹ 43,800
= 14 +	30 + 6		

= 50 days

STEP 3 :

B.D. = F.V. - C.V.

= x - 43,500

Q6.(A) Attempt ANY TWO of the following $\overline{}$

01.

1		Ag	je x	0		1		2	
			lx	1000)	880		876	
			Тх					3323	;
	C	alcu	late	e0 ⁰	, e1	⁰ , e	2 ⁰		
	SOLU	JT I O	N	_					
	Lx =	/x	+/x+	1					
			-						
	✓ L() =	<u>/0</u> + 2	/1 =	10	000 +	88	30 = 9	940
	√ L1	=	<u>/1</u> + 2	/2 =	8	80 +	87	6 = 8	78
	T _X +	1 =	т _х –	Lx					
	✓	T2	=	T1 -	L1				
	3	323	=	T1 -	878				
		T_1	=	4201					
	~	Τ1	=	T0 -	L0				
	4	4201	=	10 -	940				
		10	=	5141					
	ex ⁰	=	Tx / x						
	e0 ⁰	=	T0 /0	= _	5141 1000	5	5.14	11	
	e1 ⁰	=	T <u>1</u> /1	= _	4201 880	4	4.77 (74 (USE LO	DG)
	e2 ⁰	=	T2 / 2	= _	3323 876	3	3.79 ()3 (USE LO	DG)

02. Suppose X is a random variable with pdf $f(x) = \underline{c} \qquad ; \quad 1 < x < 3$

Find c; E(X)
i)
$$\int_{1}^{3} \frac{c}{x} dx = 1$$

1
c $\int_{1}^{3} \frac{1}{x} dx = 1$
c $\left[\log x\right]_{1}^{3} = 1$
c $\left[\log 3 - \log 1\right] = 1$
c $\log 3 = 1$
c $\left[\log 3 - \log 1\right] = 1$

Hence X is a r.v. with pdf

ii)

$$f(x) = \frac{1}{x \cdot \log 3} ; 1 < x < 3$$

$$E(x) = \int_{1}^{3} x \cdot f(x) dx$$

$$= \int_{1}^{3} x \cdot \frac{1}{x \cdot \log 3} dx$$

$$= \int_{1}^{3} \frac{1}{\log 3} dx$$

$$= \left(\frac{x}{\log 3}\right)_{1}^{3}$$

$$= \frac{2}{\log 3}$$

(06)

03. the equation of the line of regression of Y on X is 3x + 2y = 26 and X on Y is 6x + y = 31. Find var(X) if var(Y) = 36

SOLUTION

Y on X :
$$3x + 2y = 26$$

 $2y = -3x + 26$
 $y = -\frac{3x}{2} + \frac{26}{2}$
 $byx = -\frac{3}{2}$
X on Y : $6x + y = 31$
 $6x = -y + 31$
 $x = -\frac{1}{6}y + \frac{31}{6}$
 $bxy = -\frac{1}{6}$
 $r^2 = byx x bxy$
 $= -\frac{3}{2}x - \frac{1}{6}$
 $= \frac{1}{4}$
r = $-\frac{1}{2}$ byx & bxy are negative
 $bxy = r \frac{\sigma x}{\sigma y}$
 $-\frac{1}{6} = -\frac{1}{2}\frac{\sigma y}{6}$
 $\sigma y = 2$
∴ $var(y) = 4$

(B) Attempt ANY TWO of the following

01. a team of 4 horses and 4 riders has entered the jumping show contest . The number of penalty points to be expected when each rider rides horse is shown below . How should the horses be assigned to the riders so as to minimize the expected loss . Also find the minimum expected loss HORSES

•	p 0 0 0 0 0				1				
	`				H1	H ₂	H3	H4	
				R1	12	3	3	2	
RIDERS R2				1	11	4	13		
				R3	11	10	6	11	
				R4	5	8	1	7	
so	LUTION								
10	1	1	0		Reduc	ing the m	natrix usi	ng 'ROW Mi	INIMUM'
0	10	3	12			-		-	
5	4	0	5						
4	7	0	6						
10	0	1	0		Reduc	ing the m	natrix usi	ng `COLUMI	N MINIMUM'
0	9	3	12						
5	3	0	5						
4	6	0	6						
10	Γ	1	X		Alloca	tion using	'SINGI		W COLUMN' method
		3	12		Alloca	tion using	J SINGL	L ZERO RO	W COLONNY MEthod
5	3	0	5		alloca	tion IN(COMPLET	F	
4	6	X	6					_	
	_	;	× .		RE	VISE			
10	0	1			STEP	1 – Dra	awing mir	nimum lines	s to cover ALL `0's
<u></u>	9	3	12						
√ 5	3		5						
√ 4	6	X	6						
		N							
10	0	4	0		STEP	2 – REVIS	Е ТНЕ МИ	ATRIX	
0	9	3	12			reduce	e all the	e uncovere	d elements by its
2	0	0	2			minim	um & ado	d the same	at the intersection
1	3	0	3						
	\sim								
10		4	10		ке – а	allocation			
<u>ן ו</u> כ	ر ا ا	د ملا	12 2						
2 1	2	رم ا	∠ २						
T	J		J						

Since every row and every column contains an $_{\mbox{ASSIGNED ZERO}}$, $\mbox{ASSIGNMNET PROBLEM is SOLVED}$

OPTIMAL ASSIGNMENT : R_1 – H_4 ; R_2 – H_1 ; R_3 – H_2 ; R_4 – H_3

Minimum Penalty points = 2 + 1 + 10 + 1 = 14

02. Information on vehicles (in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as

B

 Σx = 105 ; Σy = 409 ; Σx^2 = 1681 ; Σy^2 = 39350 ; Σxy = 8075 . Obtain linear regression of Y on X

SOLUTION

$$\overline{x} = \underline{\Sigma}x = \frac{105}{7} = 15$$

 $\overline{y} = \underline{\Sigma}y = \frac{409}{7} = 58.43$

by $= \frac{n\Sigma xy - \Sigma x.\Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$

$$= \frac{7(8075) - (105)(409)}{7(1681) - (105)^2}$$

= 56525 - 42945	
11767 - 11025	LOG CALC
= <u>13580</u>	4.1329 - 2.8704
742	AL 1.2625
= 18.30	18.30

Equation

$$y - y = byx (x - x)$$

$$y - 58.43 = 18.30(x - 15)$$

$$y - 58.43 = 18.30x - 274.5$$

$$y = 18.30x - 274.50 + 58.43$$

$$y = 18.30x - 216.07$$

STEP 4 :

A(3,0)

B(0,4)

C(2,3)

D(5,0)

Optimal Solution : Zmin = 4 at (0,4)

Z = 2(3) + 0

Z = 2(0) + 4

Z = 2(2) + 3

Z = 2(5) + 0 = 10

= 6

= 4

= 7