

SUGGESTED SOLUTION

FYJC

SUBJECT- STATISTICS

Test Code - 6074 A

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

ANSWER:1

(a) Construct the less than cumulative frequency table as follows :

Daily Expenditure	No. of Emp	Less than <i>c.f</i> .
(in Rs.)	(f)	
350	16	16
450	19	35
550	24	59
650	28	87
750	13	100
	n = 100	

Here, n = 100 observations,

To compute the expenditure below which 75% of families include their expenditure.

i.e. to compute Q₃

$$\therefore Q_3 = \left[3\left(\frac{n+1}{4}\right)\right]^{th}$$
 observation

=
$$\left[3\left(\frac{100+1}{4}\right)\right]^{th}$$
 observation

= (75.75)th observation

 $Q_3 = Rs. 650$ $75.75 \le 87$ (LCf)

(b) First, arrange the given data into ascending order.

180, 200, 210, 225, 230, 250, 250, 300, 350, 350, 375, 375, 380, 400, 450

Here, n = 15 observations

$$\therefore D_8 = \left[8\left(\frac{n+1}{10}\right)\right]^{th}$$
 observation

$$= \left[8 \left(\frac{15+1}{10} \right) \right]^{th} \text{ observation}$$

= (12.8)th observation

= 12th observation + 0.8 [13th observation - 12th observation]

= 375 + 0.8[5]

= 375 + 4.00

(02)

(02)

(c) First, arrange the given data into ascending order. 36, 38, 51, 63, 64, 68, 70, 72, 79, 82 Here, n = 10 observations $\therefore P_{85} = \left[85\left(\frac{n+1}{100}\right)\right]^{th}$ observations $= \left[85\left(\frac{10+1}{100}\right)\right]^{th}$ observations $= (9.35)^{th}$ observation $P_{85} = 9^{th}$ observation + 0.35 (10th observation - 9th observation) = 79 + 0.35 (82 - 79) = 79 + 0.35 = 79 + 1.05= 80.05

ANSWER: 2

(a). Construct the frequency and less than cumulative frequency table (03)

Class Interval	Frequency (f)	Less than cumulative frequency (<i>l.c.f.</i>)
20 – 30	80	80
30 – 40	160	240
40 – 50	180	420 ← P _x
50 - 60	80	500

Since, $P_x = 45$ lies in the class 40 - 50

L = lower boundary of P_x class = 40

h = class width of P_x class = 10

f =frequency of P_x class = 180

c.f. = less than cumulative frequency of the class preceding P_x class = 240

N = total frequency = 500

$$P_{x} = L + \frac{h}{f} \left(\frac{xN}{100} - C.f. \right)$$

$$45 = 40 + \frac{10}{180} \left(\frac{x \times 500}{100} - 240 \right)$$

$$45 - 40 = \frac{10}{180} \left(\frac{x \times 500}{100} - 240 \right)$$

 $\frac{180 \times 5}{10} = \left(\frac{x \times 500}{100} - 240\right)$ 90 + 240 = 5x 330 = 5x x = 66

66% workers have age below 45 years and 34% workers have age more than 45 years.

(b)

Weight	No. of employees	Less than c.f.
(in kg)		
45 – 50	6	6
50 – 55	8	14
55 – 60	15	29
60 – 65	26	55
65 – 70	20	75
70 – 75	14	89
75 – 80	11	100
	N = 100	

To find the maximum weight of the lightest 25% of employees

i.e. To find Q₁

for $Q_1: \frac{N}{4} = \frac{100}{4} = 25$

∴ 25 ≤ 29 (LCF)

 \therefore 55 – 60 be the Q₁ class

Here, L = 55, h = 5, f = 15, c.f. = 14

$$\therefore Q_1 = L + \frac{h}{f} \left(\frac{N}{4} - c. f. \right)$$

= 55 + $\frac{5}{15} (25 - 14)$
= 55 + $\frac{1}{3} \times 11$
= 55 + 3.6666
= 55 + 3.67
= 58.67

4 | Page

(03)

ANSWER: 3

(a) We transform the data as follow :

Wages	No. of workers	Less than c.f.
(in Rs.)	(f)	(LCF)
8000 - 9000	5	5
9000 - 10000	18	23
10000 - 11000	46	69
11000 - 12000	34	103
12000 - 13000	34	137
13000 - 14000	13	150
14000 - 15000	9	159
15000 - 16000	1	160
16000 - 17000	0	160
	N = 160	

For
$$Q_1 = \frac{N}{4} = \frac{160}{4} = 40$$

 $: 40 \le 69 \text{ (LCF)}$

 \therefore 10000 to 11000 be the Q₁ Class

Here, *l* = 10000, h = 1000, f = 46, c.f. = 23

$$\therefore Q_1 = l + \frac{h}{f} \left(\frac{N}{4} - c. f. \right)$$

= 10000 + $\frac{1000}{46} (40 - 23)$
= 1000 + $\frac{1000}{46} \times 17$
= 10000 + 369.57
Q_1 = 10369.57

For $Q_2 = \frac{2N}{4} = \frac{N}{2} = \frac{160}{2} = 80$

: 80 < 103 (LCF)

 \therefore 11000 to 12000 be the Q_2 class

Here, *l* = 11000, h = 1000, f = 34 c.f. = 69

$$\therefore Q_2 = l + \frac{h}{f} \left(\frac{N}{2} - c. f. \right)$$
$$= 11000 + \frac{1000}{34} (80 - 69)$$
$$= 11000 + \frac{1000}{34} \times 11$$
$$Q_2 = 11000 + 323.53$$

(04)

∴ Q₂ = 11323.53

For
$$Q_3 = \frac{3N}{4} = \frac{3 \times 160}{4} = 120$$

: $120 \le 137$ (LCF)

 \therefore 12000 to 13000 be the Q_3 class

Here, *l* = 12000, h = 1000, f = 34, c.f. = 103

$$\therefore Q_3 = l + \frac{h}{f} \left(\frac{3N}{4} - c \cdot f \cdot \right)$$
$$= 12000 + \frac{1000}{34} (120 - 103)$$
$$= 12000 + \frac{1000}{34} \times 17$$
$$= 12000 + 500$$

Q₃ = 12,500

(b). let the missing frequencies be 'x' and 'y'

Wages	No. of persons	Less than c.f.
(in Rs.)	(f)	
0 – 500	7	7
500 - 1000	x	7 + <i>x</i>
1000 - 1500	25	32 + <i>x</i>
1500 – 2000	30	62 + <i>x</i>
2000 – 2500	У	62 + <i>x</i> + <i>y</i>
	N = 62 + x + y	

Given, N = 100

But N = 62 + x + y

 \therefore 62 + *x* + *y* = 100

 \therefore x + y = 38

i.e. *y* = 38 – *x*(i)

Also, D₃ = Rs. 1100

 D_3 lies in the 1000 – 1500

 \therefore 1000 – 1500 be the D₃ class

Here, *l* = 1000, h = 500, f = 25 c.f. = 7 + *x*

(04)

:.
$$D_3 = l + \frac{h}{f} \left(\frac{3N}{10} - c \cdot f \cdot \right)$$

 $1100 = 1000 + \frac{500}{25} [30 - (7 + x)]$
 $100 = 20 [30 - 7 - x]$
 $5 = 23 - x$
 $x = 18$
Sub. $x = 18$ in equation (i)
 $y = 38 - 18$

y = 20